精英家教网 > 高中数学 > 题目详情

【题目】如图,AB是平面的斜线段,A为斜足,点C满足,且在平面内运动,则有以下几个命题:

①当时,点C的轨迹是抛物线;

②当时,点C的轨迹是一条直线;

③当时,点C的轨迹是圆;

④当时,点C的轨迹是椭圆;

⑤当时,点C的轨迹是双曲线.

其中正确的命题是__________.(将所有正确的命题序号填到横线上)

【答案】②③

【解析】

根据题意,分别验证C点的轨迹,当时,作斜线段AB的中垂面,与平面的交线为一条直线,即为C点轨迹;当时,作B在平面内的射影为D

连接BDCD,在平面内建立平面直角坐标系,求C点轨迹方程,根据轨迹方程即可判断.

时,,过AB的中点作线段AB的垂面

则点C的交线上,即点C的轨迹是一条直线;

时,,设B在平面内的射影为D

连接BDCD

,则

在平面内,以AD所在直线为x轴,以AD的中垂线为y轴如图建立平面直角坐标系,

,则有

化简可得.

C的轨迹是圆.

故答案为:②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,EF分别为边的中点.现将沿着折叠到的位置,使得平面平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若在定义域内单调递增,求的取值范围;

2)若,且满足,问:函数处的导数能否为0?若能,求出处的导数;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式2lnxax2+2a2x+1恒成立,则a的最小整数值是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x+1||2x2|的最大值为M,正实数ab满足a+bM

1)求2a2+b2的最小值;

2)求证:aabbab

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2019年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示:

1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司20204月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,现有AB两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料的使用寿命不同,现对AB两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

经甲公司测算平均每件新型材料每月可以带来6万元收人入,不考虑除采购成本之外的其他成本,A型号材料每件的采购成本为10万元,B型号材料每件的采购成本为12万元.假设每件新型材料的使用寿命都是整月数,且以频率作为每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的平均值为决策依据,你会选择采购哪款新型材料?

参考数据:.

参考公式:回归直线方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果存在常数k使得无穷数列满足恒成立,则称为数列.

1)若数列数列,,求

2)若等差数列数列,求数列的通项公式;

3)是否存在数列,使得,…是等比数列?若存在,请求出所有满足条件的数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函

1)当的最小正周期为时,求的值;

2)当时,设的内角ABC对应的边分别为abc,已知,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,,平面平面,点在棱.

的中点,证明:.

与平面所成角的正弦值为,求.

查看答案和解析>>

同步练习册答案