【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 () | ||||||
就诊人数(个) |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的组数据恰好是相邻两月的概率;
(2)若选取的是1月与月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考数据,
(参考公式: ,)
【答案】(1)(2)(3)该小组所得线性回归方程是理想的
【解析】分析:(1)该题是一个古典概型,试验发生包含的事件是从6组数据中选取2组数据共有种情况,满足条件的事件是抽到相邻两个月的数据的情况有5种,根据古典概型的概率公式得到结果;
(2)根据所给的数据,求出的平均数,根据求线性回归方程系数的方法,求出系数b,把b和的平均数代入求的公式,求出的值,写出回归直线方程;
(3)根据所求的回归直线方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值作差,差的绝对值不超过2,得到回归直线方程是理想的.
详解:(1)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的,其中,抽到相邻两个月的数据的情况有5种 ,所以
(2)由数据求得 , 由公式求得,
再由
所以关于的线性回归方程为
(3)当时,
同理, 当时, ,,
所以,该小组所得线性回归方程是理想的.
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下的资料:
该兴趣小组确定的研究方案是:现从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选用的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月的数据,求出关于的线性回归方程;
(3)若有线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否是理想?
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线 ,曲线C2的参数方程为: ,(θ为参数),以O为极点,x轴的正半轴为极轴的极坐标系.
(1)求C1 , C2的极坐标方程;
(2)射线 与C1的异于原点的交点为A,与C2的交点为B,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在上的函数,其图象是连续不断的,且存在常数使得对任意的实数都成立,则称是一个“特征函数”则下列结论中正确的个数为( ).
①是常数函数中唯一的“特征函数”;
②不是“特征函数”;
③“特征函数”至少有一个零点;
④是一个“特征函数”;.
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1的方程为3x+4y﹣12=0.
(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;
(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为, ,离心率为,且过点.
()求椭圆的标准方程.
()、、、是椭圆上的四个不同的点,两条都不和轴垂直的直线和分别过点, ,且这条直线互相垂直,求证: 为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com