精英家教网 > 高中数学 > 题目详情
13.设m≥14是一个整数,函数f:N→N定义如下:
f(n)=$\left\{\begin{array}{l}{n-m+14,n>{m}^{2}}\\{f(f(n+m-13)),n≤{m}^{2}}\end{array}\right.$
求出所有的m,使得f(1995)=1995.

分析 根据已知中f(n)=$\left\{\begin{array}{l}{n-m+14,n>{m}^{2}}\\{f(f(n+m-13)),n≤{m}^{2}}\end{array}\right.$,分当m<$\sqrt{1995}$时,和当m≥$\sqrt{1995}$时,两种情况求出满足条件的m值,可得答案.

解答 解:f(n)=$\left\{\begin{array}{l}{n-m+14,n>{m}^{2}}\\{f(f(n+m-13)),n≤{m}^{2}}\end{array}\right.$
当m<$\sqrt{1995}$时,n>m2
f(1995)=1995-m+14=1995,
解得:m=14,满足条件;
当m≥$\sqrt{1995}$时,n≤m2,1995+m-13>m2
∴f(1995)=f(f(1995+m-13))=f(1995+m-13-m+14)=f(1996)=f(1997)=…=f(m2)=f(m2+1)=m2+1-m+14=1995,
解得:m=45,或m=-44(舍去),
综上所述,m=45,或m=14.

点评 本题考查的知识点是分段函数的应用,本题含有参数,分类起来比较抽象,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若sinα-cosβ=-$\frac{1}{2}$,sinβ-cosα=-$\frac{1}{2}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),则sin(α+β)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若方程a=|2x+1-2|恰有一个根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2过F1作不与x轴重合的直线l1,与椭圆C交于P,Q两点,若△PQF2的周长为4$\sqrt{2}$.
(1)求椭圆C的标准方程
(2)过F1作与直线l1垂直的直线l2,且l2与椭圆C交于点M,N两点,求四边形PMQN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长半轴长为2,且点(1,$\frac{\sqrt{3}}{2}$)在椭圆上.
(1)求椭圆的方程;
(2)过椭圆右焦点的直线l交椭圆于A,B两点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设m为实数,函数f(x)=2x2+(x-m)|x-m|,h(x)=$\left\{\begin{array}{l}{\frac{f(x)}{x},x≠0}\\{0,x=0}\end{array}\right.$.若h(x)对于一切x∈[1,3],不等式h(x)≥1恒成立,则实数m的取值范围是m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.满足A1∪A2={x,y,z}的有序集合对(A1,A2)的个数是(  )
A.6B.8C.24D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设数列{an}、{bn}都是等差数列,且a1=15,b1=35,a2+b2=60,则a36+b36=400.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数$\frac{3+i}{x-i}$(x∈R)在复平面内对应的点位于以原点O为圆心,以$\sqrt{2}$为半径的圆周上,则x的值为(  )
A.2B.1+3iC.±2D.$±\frac{1}{2}$

查看答案和解析>>

同步练习册答案