精英家教网 > 高中数学 > 题目详情
投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1、2、3、4、5、6)一次,则两颗骰子向上点数之积等于6的概率为
 
考点:古典概型及其概率计算公式
专题:概率与统计
分析:试验发生包含的事件是掷两颗骰子有6×6=36个结果,满足条件的事件共4种结果,从而得到概率.
解答: 解:由题意知本题是一个等可能事件的概率,
试验发生包含的事件是掷两颗骰子有6×6=36个结果,
满足条件的事件是两颗骰子向上点数之积等于6,有(1,6)、(2,3)、(3,2)、(6,1)共4种结果,
∴要求的概率是
4
36
=
1
9

故答案为:
1
9
点评:本题考查等可能事件的概率,解题的关键是列举出满足条件的事件数,列举时要做到不重不漏,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线的顶点在坐标原点O,焦点F在x轴上,抛物线上的点A到F的距离为2,且A的横坐标为l.直线l:y=kx+b与抛物线交于B,C两点.
(1)求抛物线的方程;
(2)当直线OB,OC的倾斜角之和为45°时,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
2x-3
x+1
(-2≤x≤2且x≠-1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=
1-2x
1+3x

(2)y=
1-2
x
1+3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题,其中所有正确命题的序号为:
 

①已知等差数列{an}的前n项和为Sn
OA
OB
为不共线向量,又
OP
=a1
OA
+a2014
OB
,若A、B、P三点共线,则S2014=1007;
②“a=
1
0
1-x2
dx
”是“函数y=cos2(ax)-sin2(ax)的最小正周期为4”的充要条件;
③设函数f(x)=
2014x+1+2013
2014x+1
+2014sinx(x∈[-
π
2
π
2
])
的最大值为M,最小值为m,则M+m=4027;
④已知函数f(x)=|x2-2|,若f(a)=f(b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-bx+2(x∈(-∞,1))是单调函数,则b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
y≥x-7
y≥-x+11
y≥-2x+14
表示的平面区域为D,若对数函数y=logax(a>0且a≠1)上存在区域D上的点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3x+3
2x+1
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过抛物线y2=2px(p>0)的焦点F的两条互相垂直的直线与抛物线分别交于点A、B和C、D;抛物线上的点T(2,t)(t>0)到焦点的距离为3.
(1)求p、t的值;
(2)当四边形ACBD的面积取得最小值时,求直线AB的斜率.

查看答案和解析>>

同步练习册答案