精英家教网 > 高中数学 > 题目详情

【题目】如图,CD是以AB为直径的圆上两点,AB=2AD=2AC=BCF AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影EBD上,已知CE=

1)求证:AD⊥平面BCE

2)求证:AD∥平面CEF

3)求三棱锥A﹣CFD的体积.

【答案】1)(2)证明见解析(3

【解析】

试题(1)依题AD⊥BDCE⊥AD,由此能证明AD⊥平面BCE

2)由已知得BE=2BD=3.从而AD∥EF,由此能证明AD∥平面CEF

3)由VACFD=VC﹣AFD,利用等积法能求出三棱锥A﹣CFD的体积.

1)证明:依题AD⊥BD

∵CE⊥平面ABD∴CE⊥AD

∵BD∩CE=E

∴AD⊥平面BCE

2)证明:Rt△BCE中,CE=BC=∴BE=2

Rt△ABD中,AB=2AD=∴BD=3

∴AD∥EF∵AD在平面CEF外,

∴AD∥平面CEF

3)解:由(2)知AD∥EFAD⊥ED

ED=BD﹣BE=1

∴FAD的距离等于EAD的距离为1

∴SFAD==

∵CE⊥平面ABD

∴VACFD=VC﹣AFD===

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xexax2x

1)若fx)在x=﹣1处取得极值,求a的值及fx)的单调区间;

2)当x1时,fx)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数存在不小于的极小值,求实数的取值范围;

2)当时,若对,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,垂直于所在的平面的直径,是弧上的一个动点(不与端点重合),上一点,且是线段上的一个动点(不与端点重合).

(1)求证:平面

(2)若是弧的中点,是锐角,且三棱锥的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,平面,点D在棱上,且,建立如图所示的空间直角坐标系.

(1)当时,求异面直线的夹角的余弦值;

(2)若二面角的平面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀的硬币连掷次,设事件恰好两次正面朝上,

1)直接计算事件的概率;

2)利用计算器或计算机模拟试验80次,计算事件发生的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北. 湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验.在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

50

个体经营户

50

150

合计

1)写出选择 5 个国家综合试点地区采用的抽样方法;

2)补全上述列联表(在答题卡填写),并根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;

3)根据该试点普查小区的情况,为保障第四次经济普查的顺利进行,请你从统计的角度提出一条建议.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.

1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;

2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在150名和9511000名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?

3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在150的学生人数为,求的分布列和数学期望.

附:

查看答案和解析>>

同步练习册答案