精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知方向向量为v=(1,)的直线l过点(0,-2)和椭圆C:

 

的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.

(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足cot∠MON ≠0(O为原点).若存在,求直线m的方程;若不存

 

在,请说明理由.

 

 

 

【答案】

(I)解法一:直线,  ①

过原点垂直的直线方程为,  ②

解①②得

∵椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上,

 

∵直线过椭圆焦点,∴该焦点坐标为(2,0).

  故椭圆C的方程为  ③

 

解法二:直线.

设原点关于直线对称点为(p,q),则解得p=3.

 

∵椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上,

    ∵直线过椭圆焦点,∴该焦点坐标为(2,0).

 

  故椭圆C的方程为  ③

(II)解法一:设M(),N().

当直线m不垂直轴时,直线代入③,整理得

 

 

点O到直线MN的距离

 

      

 

      

 

整理得

当直线m垂直x轴时,也满足.

故直线m的方程为

经检验上述直线均满足.

所以所求直线方程为

解法二:设M(),N().

当直线m不垂直轴时,直线代入③,整理得

 

∵E(-2,0)是椭圆C的左焦点,

∴|MN|=|ME|+|NE|

=

 

以下与解法一相同.

解法三:设M(),N().

设直线,代入③,整理得

 

 

 

 

 

 

=,整理得      

 

解得

 

故直线m的方程为

 

经检验上述直线方程为

 

所以所求直线方程为

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案