精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为(其中为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,并取相同的单位长度,曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)过点作直线的垂线交曲线两点,求.

【答案】(1); (2)16.

【解析】

1)对直线的参数方程消参得,利用即可将化为,问题得解。

2)利用已知即可求得过点的直线的参数方程为:,联立直线参数方程与曲线的普通方程可得:,结合韦达定理及直线参数方程中参数的几何意义即可得解。

1)直线的参数方程为(其中为参数)

消去可得:

,得.

2)过点与直线垂直的直线的参数方程为:t为参数),代入可得

MN对应的参数为,则

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象与直线分别交于两点,则(

A.的最小值为

B.使得曲线处的切线平行于曲线处的切线

C.函数至少存在一个零点

D.使得曲线在点处的切线也是曲线的切线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求直线的参数方程和圆的标准方程;

(2)设直线与圆交于两点,若,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最值;

(2)若,当有两个极值点时,总有,求此时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了缓解城市交通压力,某市市政府在市区一主要交通干道修建高架桥,两端的桥墩现已建好,已知这两桥墩相距m米,余下的工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元.

(1)试写出工程费用y关于x的函数关系式;

(2)m640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用一根长为分米的铁丝制作一个长方体框架(12条棱组成),使得长方体框架的底面长是宽的倍.在制作时铁丝恰好全部用完且损耗忽略不计.现设该框架的底面宽是分米,表示该长方体框架所占的空间体积(即长方体的体积).

(1)试求函数的解析式及其定义域;

(2)当该框架的底面宽取何值时,长方体框架所占的空间体积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数存在极小值点,求的取值范围;

(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,侧面底面.

(1)求证:平面平面

(2)若,且二面角等于,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案