精英家教网 > 高中数学 > 题目详情
已知抛物线Cy2=2px(p>0)的焦点为F,抛物线C与直线l1y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2l1垂直,且与抛物线交于不同的两点AB,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.
(1)y2=8x.(2)24
(1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p×8,∴2p=8,∴抛物线方程为y2=8x.
(2)直线l2l1垂直,
故可设l2xymA(x1y1),B(x2y2),且直线l2x轴的交点为M.
y2-8y-8m=0,Δ=64+32m>0,∴m>-2.
y1y2=8,y1y2=-8m,∴x1x2m2.
由题意可知OAOB,即x1x2y1y2m2-8m=0,∴m=8或m=0(舍),
l2xy+8,M(8,0),
SFABSFMBSFMA|FM|·|y1y2|=3=24.?
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,直线为平面上的动点,过点的垂线,垂足为点,且
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线,抛物线,已知点在抛物线上,且抛物线上的点到直线的距离的最小值为

(1)求直线及抛物线的方程;
(2)过点的任一直线(不经过点)与抛物线交于两点,直线与直线相交于点,记直线的斜率分别为.问:是否存在实数,使得?若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D.

(1)证明:∠BAD=∠EAD;
(2)求△ABD面积的最小值,并写出此时A点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点,焦点轴上,抛物线上的点的距离为2,且的横坐标为1.直线与抛物线交于两点.
(1)求抛物线的方程;
(2)当直线的倾斜角之和为时,证明直线过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(  )
A.2 B.2C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,抛物线C1:y2=4x和圆C2:(x-1)2+y2=1,直线l经过C1的焦点F,依次交C1,C2于A,B,C,D四点,则·的值是   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线焦点的直线交其于两点,为坐标原点.若,则的面积为(  )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对抛物线,下列描述正确的是
A.开口向上,焦点为B.开口向上,焦点为
C.开口向右,焦点为D.开口向右,焦点为

查看答案和解析>>

同步练习册答案