精英家教网 > 高中数学 > 题目详情
13.设a<$\frac{1}{2}$,判断并用单调性定义证明函数$f(x)=\frac{ax+1}{x+2}$,在(-2,+∞)上的单调性.

分析 根据函数单调性的定义证明即可.

解答 解:设-2<x1<x2
则f(x1)-f(x2
=$\frac{{ax}_{1}+1}{{x}_{1}+2}$-$\frac{{ax}_{2}+1}{{x}_{2}+2}$
=$\frac{({ax}_{1}+1){(x}_{2}+2)-({ax}_{2}+1){(x}_{1}+2)}{{(x}_{1}+2){(x}_{2}+2)}$
=$\frac{(2a-1){(x}_{1}{-x}_{2})}{{(x}_{1}+2){(x}_{2}+2)}$>0,
故函数f(x)是减函数.

点评 本题考查了通过定义证明函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.直线3x+4y+12=0与⊙C:(x-1)2+(y-1)2=9的位置关系是(  )
A.相交并且过圆心B.相交不过圆心C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f($\sqrt{x}$-1)=x+2$\sqrt{x}$+2,则f(3)=26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边长分别为a,b,c,且满足asinBcosC+csinBcosA=$\frac{1}{2}$b,则∠B=(  )
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正项等差数列{an}的前n项和为Sn,已知am-1+am+1-am2=-3,S2m-1=57,则m=(  )
A.38B.20C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|0≤x-1≤2},B={x|log2x>1}.
(1)求A∩B,A∪B;
(2)已知集合C={x|1<x<a,a∈R},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若B={-1,3,5},使得f:x→2x+1是A到B的映射,则集合A可能为{-1,1,2}.(只需填写一个)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则P∩(∁RQ)=(  )
A.(-∞,0]∪[2,+∞)B.(-∞,0]∪(2,+∞)C.(-∞,0)∪[2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既为奇函数又在(0,+∞)内单调递减的是(  )
A.f(x)=x3B.f(x)=${x}^{-\frac{1}{2}}$C.f(x)=-xD.f(x)=x+$\frac{3}{x}$

查看答案和解析>>

同步练习册答案