精英家教网 > 高中数学 > 题目详情
18.参数方程$\left\{\begin{array}{l}{x=2cosθ-3}\\{y=2sinθ+1}\end{array}\right.$(θ为参数)化为普通方程是(x+3)2+(y-1)2=4.

分析 利用sin2θ+cos2θ=1,即可得出.

解答 解:由x=2cosθ-3可得cosθ=$\frac{x+3}{2}$,
同理可得:sinθ=$\frac{y-1}{2}$.
∴sin2θ+cos2θ=$(\frac{y-1}{2})^{2}$+$(\frac{x+3}{2})^{2}$=1,
化为(x+3)2+(y-1)2=4.
故答案为:(x+3)2+(y-1)2=4.

点评 本题考查了同角三角函数平方关系、参数方程化为普通方程,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.不等式|x-a|+3x≤0的解集包括x≤-1,则a的取值范围为[-4,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{x-[x],x≥0}\\{\frac{1}{2}f(x+1),x<0}\end{array}\right.$,其中[x]表示不超过x的最大整数,如[-1.6]=-2,[1.3]=1,则函数y=f(x)-lg(3-x)不同零点的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一根长l cm的线,一段固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系式是s=3cos($\sqrt{\frac{g}{l}}$t+$\frac{π}{3}$),其中g是重力加速度,当小球摆动的周期是1s时,线长l等于(  )
A.$\frac{g}{π}$B.$\frac{g}{2π}$C.$\frac{g}{{π}^{2}}$D.$\frac{g}{{4π}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,则f(x)=(  )
A.x2-2B.x2+$\frac{1}{{x}^{2}}$C.x2+2D.x2-$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a>0,b>0,a+b=1,(a+$\frac{1}{a}$)2+(b+$\frac{1}{b}$)2的最小值(  )
A.6B.8C.10D.$\frac{25}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果在区间[1,3]上,函数f(x)=x2+px+q与g(x)=2x+$\frac{1}{{x}^{2}}$在同一点取得相同的最小值,那么下列说法不对的是(  )
A.f(x)≥3(x∈[1,2])B.f(x)≤4(x∈[1,2])
C.f(x)在x∈[1,2]上单调递增D.f(x)在x∈[1,2]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若关于x的方程x2-x-(m+1)=0在[-1,1]上有解,求m的取值范围.

查看答案和解析>>

同步练习册答案