精英家教网 > 高中数学 > 题目详情
已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为( )
A.4
B.
C.
D.1
【答案】分析:求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.
解答:解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,
则OO1EO2为矩形,
于是对角线O1O2=OE,
而OE===4.
故选:A.
点评:本题主要考查球的有关概念以及两平面垂直的性质,是对基础知识的考查.解决本题的关键在于得到OO1EO2为矩形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知球的半径为5,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为2
3
,若其中一个圆的半径为4,则另一个圆的半径为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为


  1. A.
    4
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为(  )
A.4B.
5
C.2
3
D.1

查看答案和解析>>

同步练习册答案