精英家教网 > 高中数学 > 题目详情
8.已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,则f(5)的值为(  )
A.2-mB.4C.2mD.-m+4

分析 由f(-5)=-55a+55b-53c+2=m.知55a-55b+53c=2-m,由此能求出f(5)的值.

解答 解:∵f(x)=ax7-bx5+cx3+2,且f(-5)=m,
∴f(-5)=-55a+55b-53c+2=m.
∴55a-55b+53c=2-m,
∴f(5)=55a-55b+53c+2=-m+4.
故选:D.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.等边△ABC的边长为$\sqrt{5}$,则$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,b=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AB、CD是⊙O的两条直径,P是圆周上任一点,作PM⊥AB,PN⊥CD,AH⊥CD,求证:MN=AH.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,同时满足两个条件“①?x∈R,f($\frac{π}{12}+x$)+f($\frac{π}{12}-x$)=0;②当-$\frac{π}{6}$<x<$\frac{π}{3}$时,f′(x)>0”的一个函数是(  )
A.f(x)=sin(2x+$\frac{π}{6}$)B.f(x)=cos(2x+$\frac{π}{3}$)C.f(x)=sin(2x-$\frac{π}{6}$)D.f(x)=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(2-\frac{a}{2})x+2,x≤1}\end{array}\right.$是(-∞,+∞)上的增函数,那么a的取值范围是[$\frac{8}{3}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(  )
A.y=x+1B.y=-x2+1C.y=|x|+1D.$y=1-\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若α,β∈(0,π)且 $tanα=\frac{1}{2},tanβ=\frac{1}{3}$,则α+β=(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A(0,2),B(3,1)是椭圆G:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$上的两点.
(1)求椭圆G的离心率;
(2)已知直线l过点B,且与椭圆G交于另一点C(不同于点A),若以BC为直径的圆经过点A,求直线l的方程.

查看答案和解析>>

同步练习册答案