精英家教网 > 高中数学 > 题目详情
3.已知直线y=x-2与抛物线y2=2x相交于A、B两点,O为坐标原点.
(1)求证:OA⊥OB.
(2)求|AB|.

分析 (1)将直线方程代入抛物线方程,利用韦达定理,求得y1y2及x1x2,由$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=0,即可证明OA⊥OB;
(2)利用弦长公式即可求得|AB|.

解答 解:(1)证明:设A(x1,y1 ),B(x2,y2),
则$\left\{\begin{array}{l}{y=x-2}\\{{y}^{2}=2x}\end{array}\right.$,整理得:y2-2y-4=0,
∴y1+y2=2,y1y2=-4
∴x1x2=(y1+2)(y2+2)=y1y2+2(y1+y2)+4=4,
由$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=4+(-4)=0,
∴$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
∴OA⊥OB.
(2)由(1)可知:x1+x2=(y1+2)+(y2+2)=y1+y2+4=6,
|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{36-4×4}$=2$\sqrt{10}$,
∴|AB|=2$\sqrt{10}$.

点评 本题考查直线与抛物线的位置关系,考查韦达定理,弦长公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{1}{2}$,F1,F2分别为左右焦点,B1为短轴的一个端点,△B1F1F2的面积为$\sqrt{3}$
(Ⅰ)求椭圆E的方程
(Ⅱ)若A,B,C,D是椭圆上异于顶点且不重合的四个点,AC于BD相交于点F1,且$\overrightarrow{AC}•\overrightarrow{BD}$=0,求$\frac{|AC|}{|BD|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果实数x、y满足关系$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{2x-y+2≥0}\end{array}\right.$则(x-1)2+y2的最小值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的前n项和为Sn,且a1=1,2Sn=an•an+1(n∈N*).若bn=(-1)n$\frac{2n+1}{{a}_{n}•{a}_{n+1}}$,则数列{bn}的前n项和Tn=-1+$\frac{(-1)^{n}}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\left\{\begin{array}{l}{-4{x}^{2},x<0}\\{{x}^{2}-x,x≥0}\end{array}\right.$,若f(a)=-$\frac{1}{4}$,则a=$\frac{1}{4}$或$\frac{1}{2}$,若方程f(x)-b=0有三个不同的实根,则实数b的取值范围是(-$\frac{1}{4}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F1、F2是双曲线x2-4y2=4的两个焦点,P在双曲线上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=f(x)定义在区间(-3,7)上,其导函数如图所示,则函数y=f(x)在区间(-3,7)上极小值的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=(  )
A.2B.4$\sqrt{2}$C.2$\sqrt{10}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)在△ABC中,若2lgtanB=lgtanA+lgtanC,则B的取值范围是[$\frac{π}{3}$,$\frac{π}{2}$).
(2)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值10.

查看答案和解析>>

同步练习册答案