精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2$\sqrt{2}$,∠PAB=60°.
(1)证明AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的正切值;
(3)求二面角P-BD-A的正切值.

分析 (Ⅰ)通过就是PA2+AD2=PD2,证明AD⊥PA.结合AD⊥AB.然后证明AD⊥平面PAB.
(Ⅱ)说明∠PCB(或其补角)是异面直线PC与AD所成的角.在△PAB中,由余弦定理得PB,判断△PBC是直角三角形,然后求解异面直线PC与AD所成的角正切函数值.
(Ⅲ)过点P做PH⊥AB于H,过点H做HE⊥BD于E,连结PE,证明∠PEH是二面角P-BD-A的平面角.RT△PHE中,$tan∠PEH=\frac{\sqrt{39}}{4}$.

解答 (Ⅰ)证明:在△PAD中,由题设$PA=2,PD=2\sqrt{2}$,
可得PA2+AD2=PD2,于是AD⊥PA.
在矩形ABCD中,AD⊥AB.又PA∩AB=A,
所以AD⊥平面PAB.
(Ⅱ)解:由题设,BC∥AD,所以∠PCB(或其补角)是异面直线PC与AD所成的角.
在△PAB中,由余弦定理得
$PB=\sqrt{P{A^2}+A{B^2}-2PA•AB•cosPAB}=\sqrt{7}$

由(Ⅰ)知AD⊥平面PAB,PB?平面PAB,
所以AD⊥PB,因而BC⊥PB,于是△PBC是直角三角形,故$tanPCB=\frac{PB}{BC}=\frac{{\sqrt{7}}}{2}$
所以异面直线PC与AD所成的角的正切值为:$\frac{\sqrt{7}}{2}$.
(Ⅲ)解:过点P做PH⊥AB于H,过点H做HE⊥BD于E,连结PE
因为AD⊥平面PAB,PH?平面PAB,所以AD⊥PH.又AD∩AB=A,
因而PH⊥平面ABCD,故HE为PE再平面ABCD内的射影.
由三垂线定理可知,BD⊥PE,从而∠PEH是二面角P-BD-A的平面角.
由题设可得,$PH=PA•sin60°=\sqrt{3},AH=PA•cos60°=1$,$BH=AB-AH=2,BD=\sqrt{A{B}^{2}+A{D}^{2}}=\sqrt{13}$,
$HE=\frac{AD}{BD}•BH=\frac{4}{\sqrt{13}}$
于是再RT△PHE中,$tan∠PEH=\frac{\sqrt{39}}{4}$.
所以二面角P-BD-A的正切函数值为$\frac{\sqrt{39}}{4}$.

点评 本题考查二面角的平面角的求法,异面直线所成角的求法,直线与平面垂直的判断,考查空间想象能力以及逻辑推理计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+|x-a|+1,a∈R
(1)试判断函数f(x)的奇偶性;
(2)若-$\frac{1}{2}$$≤a≤\frac{1}{2}$,求函数f(x)的最小值;
(3)求函数f(x)在区间[a,a+2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=60°,AB=AD=2,PA=BC=4,M是PD的中点.
(1)求证:平面AMC⊥平面PAB;
(2)求四面体P-MAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在长方形ABCD-A1B1C1D1中,AB=BC=3,BB1=4,连接B1C,过B作BE⊥B1C交CC1于E,交B1C于F.
(1)求证:A1C⊥平面BED;
(2)求A1B与平面BDE所成角的余弦值;
(3)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个球的表面积为36π,则这个球体的体积为(  )
A.18πB.36πC.72πD.108π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正三棱锥的高为1,底面边长为2$\sqrt{6}$,求这个正三棱锥的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个空间几何体的三视图及部分数据如图所示.
(1)请画出该几何体的直观图;
(2)求它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将正方形ABCD沿对角线BD折成直二面角,给出下列四个结论:
①AB,CD所成的角为60°;
②△ADC为等边三角形;
③AC⊥BD;            
④AB与平面BCD所成角为60°
其中真命题是①②③(请将你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在长方体ABCD-A1B1C1D1中,AB=3,AA1=AD=2,BE=1,F是BD1上一点,且EF∥平面ADD1A1,则三棱锥E-AFC的体积为$\frac{4}{9}$.

查看答案和解析>>

同步练习册答案