精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)将f(x)的图象上每个点纵坐标不变,横坐标伸长为原来的2倍,再将所得图象向右平移$\frac{π}{6}$个单位得到y=g(x)的图象,求函数y=g(x)在区间[-$\frac{5π}{9}$,$\frac{2π}{9}$]上的值域.

分析 (1)由图可求周期,即可求ω,由Acos($\frac{3π}{4}$+φ)=0,|φ|<$\frac{π}{2}$,可求φ,由Acos($\frac{π}{6}×3-\frac{π}{4}$)=$\sqrt{2}$,可解得A,解得函数解析式;
(2)根据正弦函数的图象变换规律可求g(x)=2sin$\frac{3}{2}$x,由x∈[-$\frac{5π}{9}$,$\frac{2π}{9}$],$\frac{3}{2}$x∈[-$\frac{5π}{6}$,$\frac{π}{3}$],即可解得函数y=g(x)在区间[-$\frac{5π}{9}$,$\frac{2π}{9}$]上的值域.

解答 解:(1)周期T=4×($\frac{π}{4}$-$\frac{1}{2}×\frac{π}{6}$)=$\frac{2π}{3}$,即ω=3;
∵Acos($\frac{3π}{4}$+φ)=0,|φ|<$\frac{π}{2}$,
∴φ=-$\frac{π}{4}$,
∵($\frac{π}{6}$,$\sqrt{2}$)在函数图象上,可得:Acos($\frac{π}{6}×3-\frac{π}{4}$)=$\sqrt{2}$,解得:A=2.
∴f(x)=2cos(3x-$\frac{π}{4}$).
(2)将f(x)的图象上每个点纵坐标不变,横坐标伸长为原来的2倍可得:y=2cos($\frac{3}{2}$x-$\frac{π}{4}$).
再将所得图象向右平移$\frac{π}{6}$个单位可得y=g(x)=2cos($\frac{3}{2}$x-$\frac{π}{2}$)=2sin$\frac{3}{2}$x,
∵x∈[-$\frac{5π}{9}$,$\frac{2π}{9}$],$\frac{3}{2}$x∈[-$\frac{5π}{6}$,$\frac{π}{3}$]
∴g(x)=2sin$\frac{3}{2}$x∈[-2,$\sqrt{3}$].

点评 本题主要考查了根据图象求正弦型函数解析式;三角函数的周期、相位变换,考查了正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(3,-4)且$\overrightarrow{a}$•$\overrightarrow{c}$=-1,$\overrightarrow{b}$•$\overrightarrow{c}$=9,则$\overrightarrow{c}$的坐标为(  )
A.(-1,-3)B.(-1,3)C.(1,3)D.(1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=$\sqrt{5}$sin(2x+φ)对任意x都有f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x).
(1)求f($\frac{π}{3}$)的值;
(2)求φ的最小正值;
(3)当φ取最小正值时,若x∈[-$\frac{π}{6}$,$\frac{π}{6}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.指数函数f(x)=ax,a>0,a≠1满足性质:对任意的x∈R,f(-x)•f(x)=1,函数g(x)的定义域为R,且g(x)也满足这个性质,若g(x)既不是指数函数也不是常值函数,那么g(x)可以是g(x)=-ax(a>0,且a≠1)(x∈R).(任写一个符合条件的函数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.log2${\;}_{\frac{1}{2}}$x-$\frac{1}{4}$≤0,则x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设0≤θ≤2π,如果sinθ>0且cos2θ>0,则θ的取值范围是(  )
A.0<θ<$\frac{3π}{4}$B.0<θ<$\frac{π}{4}$或$\frac{3π}{4}$<θ<πC.$\frac{3π}{4}$<θ<πD.$\frac{3π}{4}$<θ<$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2,∠BAC=120°,D在BC上,且$\overrightarrow{BD}$=$\frac{1}{4}$$\overrightarrow{BC}$,计算$\overrightarrow{AD}$•$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=lgx-1,则f(100)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法正确的是(  )
A.命题“?x0∈R,x02+x0+2013>0”的否定是“?x∈R,x2+x+2013<0”
B.命题p:函数f(x)=x2-2x仅有两个零点,则命题p是真命题
C.函数$f(x)=\frac{1}{x}$在其定义域上是减函数
D.给定命题p、q,若“p且q”是真命题,则?p是假命题

查看答案和解析>>

同步练习册答案