精英家教网 > 高中数学 > 题目详情

【题目】若质地均匀的六面体玩具各面分别标有数字1,2,3,4,5,6.抛掷该玩具后,任何一个数字所在的面朝上的概率均相等.抛掷该玩具一次,记事件A=“向上的面标记的数字是完全平方数(即能写出整数的平方形式的数,如9=32,9是完全平方数)

(1)甲、乙二人利用该玩具进行游戏,并规定:①甲抛掷一次,若事件A发生,则向上一面的点数的6倍为甲的得分;若事件A不发生,则甲得0分;②乙抛掷一次,将向上的一面对应的数字作为乙的得分。现甲、乙二人各抛掷该玩具一次,分别求二人得分的期望;

(2)抛掷该玩具一次,记事件B=“向上一面的点数不超过,若事件AB相互独立,试求出所有的整数

【答案】(1)答案见解析;(2)3或6.

【解析】试题分析:

(1)设甲、乙二人抛掷该玩具后,得分分别为由题意可得,计算相应的分布列可得EX=5.计算相应的分布列可得

(2)易知抛掷该玩具一次,基本事件总数共有6个,事件包含2个基本事件(1点,2点).记分别表示事件包含的基本事件数,由题意可得=,k=36,经检验可知36均满足题意,的值可能为36.

试题解析:

(1)设甲、乙二人抛掷该玩具后,得分分别为

,的分布列为

0

6

24

EX=5.

1

2

3

4

5

6

(2)易知抛掷该玩具一次,基本事件总数共有6个,事件包含2个基本事件(1点,2点).

分别表示事件包含的基本事件数,

及古典概型,得=,

事件包含的基本事件数必为3的倍数,即k=3,6,

k=3时,n(B)=3,,符合①

时,,符合①

的值可能为36.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别为内角所对的边且满足,

(I)求C的大小;

(II)现给出三个条件:①;②;③.试从中选择两个可以确定的条件写出你的选择并以此为依据求的面积S.(只写出一种情况即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(),求

1

2)令,求关于的函数关系式,及的取值范围.

3)求函数,()的最大值和最小值;并写出它的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为关于直线的对称点在直线上.

(1)求椭圆的离心率;

(2)若的长轴长为且斜率为的直线交椭圆于两点,问是否存在定点,使得的斜率之和为定值?若存在,求出所有满足条件的点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如图频数分别表:

月销售额

分组

[12.25,14.75)

[14.75,17.25)

[17.25,19.75)

[19.75,22.25)

[22.25,24.75)

频数

4

10

24

8

4

(1)作出这些数据的频率分布直方图;

(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);

(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形轴上且 ).

Ⅰ)求点轨迹的方程;

Ⅱ)延长交轨迹于点,轨迹在点处的切线与直线交于点,试判断以为圆心,线段为半径的圆与直线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1正方体中,点分别为边的中点,将沿所在的直线进行翻折,将沿所在直线进行翻折,在翻折的过程中,下列说法错误的是( )

A. 无论旋转到什么位置,两点都不可能重合

B. 存在某个位置,使得直线与直线所成的角为

C. 存在某个位置,使得直线与直线所成的角为

D. 存在某个位置,使得直线与直线所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图(1)所示的四边形中,.将沿折起,使二面角为直二面角(如图(2)),的中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 的乘积成正比;② 当时,;③,其中为常数,且.

(1)设,求出的表达式,并求出的定义域;

(2)求出附加值的最大值,并求出此时的技术改造投入的的值.

查看答案和解析>>

同步练习册答案