精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义在上的偶函数,且对任意的,都有.当时,.若直线与函数的图象有两个不同的公共点,则实数的值是( )

A. B.

C. D.

【答案】C

【解析】试题分析:解:因为函数fx)是定义在R上的偶函数,设x∈[-10],则-x∈[01],于是fx=-x2=x2

x∈[12],则(x-2∈[-10].于是,fx=fx-2=x-22

a=0时,联立y="x," y=x2,解得x=0y=0,x=y=1,即当a=0时,即直线y=x+a与函数y=fx)的图象有两个不同的公共点.

-2a0时,只有当直线y=x+a与函数fx=x2在区间[01)上相切,且与函数fx=x-22x∈[12)上仅有一个交点时才满足条件.由fx=2x=1,解得x=∴y=()2=,故其切点为(,)

)∴a=-=-y=x-, y=(x-2)21≤x2)解之得x=综上①②可知:直线y=x+a与函数y=fx)在区间[02)上的图象有两个不同的公共点时的a的值为0-又函数fx)是定义在R上的偶函数,且对任意的x∈R,都有fx+2=fx),实数a的值为,(n∈Z).故应选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为.

1)求这一技术难题被攻克的概率;

2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。(本题满分12分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,恒有成立,求实数的取值范围;

(2)若函数有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列对应是否为集合A到集合B的函数.

(1)ARB{x|x>0}fxy|x|

(2)AZBZfxyx2

(3)AZBZfxy

(4)A{x|1x1}B{0}fxy0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现从中随机抽取100人的数学与地理的水平测试成绩如下表:

成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.

)若在该样本中,数学成绩优秀率是30%,求的值;

)已知,求数学成绩为优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD平面CDE,H是BE的中点,G是AE,DF的交点

(1)求证:GH平面CDE;

(2)求证:面ADEF面ABCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014陕西理8】原命题为“若互为共轭复数,则”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(

A. 真,假,真 B. 假,假,真

C. 真,真,假 D. 假,假,假

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=,b=,且x∈.

(1)求a·b及|a+b|;

(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.

查看答案和解析>>

同步练习册答案