精英家教网 > 高中数学 > 题目详情
抛物线的准线方程是y=2,则实数a的值为(    ).
A.8B.-8C.D.
B
由于准线方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:










 
(1)求的标准方程;
(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点,且满足.若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.设直线与抛物线交于不同两点,点为抛物线准线上的一点。
(I)若,且三角形的面积为4,求抛物线的方程;
(II)当为正三角形时,求出点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)设是抛物线p>0)的内接正三角形(为坐标原点),其面积为;点M是直线上的动点,过点M作抛物线的切线MPMQPQ为切点.
(1)求抛物线的方程;
(2)直线PQ是否过定点,若过定点求出定点坐标;若不过定点,说明理由;
(3)求MPQ面积的最小值及相应的直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分其中①6分、②2分。
设抛物线的焦点为,过且垂直于轴的直线与抛物线交于两点,已知.
(1)求抛物线的方程;
(2)设,过点作方向向量为的直线与抛物线相交于两点,求使为钝角时实数的取值范围;
(3)①对给定的定点,过作直线与抛物线相交于两点,问是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由。
②对,过作直线与抛物线相交于两点,问是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?(只要求写出结论,不需用证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是抛物线形拱桥,当水面在图中位置时,拱顶离水面2米,水面宽4米.水下降1米后,水面宽为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点到其准线的距离为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点作一直线交抛物线于A(x1, y1)、B(x2, y2)两点,并且已知=6,那么=(      )
A.6B.8C.9D.10

查看答案和解析>>

同步练习册答案