精英家教网 > 高中数学 > 题目详情

(本题满分15分)
已知,且为自然对数的底数)。
(1)求的关系;
(2)若在其定义域内为增函数,求的取值范围;
(3)证明:
(提示:需要时可利用恒等式:)

解:(1)由题意

(2)由(1)知:(x>0)

h(x)=x2-2x+.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:
h(x)≥0恒成立.
x2-2x+≥0
上恒成立[来源:学科网ZXXK]


(3)证明:证:lnxx+1≤0  (x>0),
.
x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
x=1为k(x)的极大值点,
∴k(x)≤k(1)=0.
即lnxx+1≤0,∴lnxx-1.
②由①知lnxx-1,又x>0,


解析

练习册系列答案
相关习题

科目:高中数学 来源:2013届浙江省余姚中学高三上学期期中考试文科数学试卷(带解析) 题型:解答题

(本题满分15分)已知点(0,1),,直线都是圆的切线(点不在轴上).
(Ⅰ)求过点且焦点在轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线与(Ⅰ)中的抛物线相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:2013届江苏省扬州市高二下期中数学试卷(解析版) 题型:解答题

(本题满分15分)

已知命题p,命题q. 若“pq”为真命题,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题

(本题满分15分)已知函数

(Ⅰ)若为定义域上的单调函数,求实数m的取值范围;

(Ⅱ)当时,求函数的最大值;

(Ⅲ)当,且时,证明:

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三下学期2月模拟考试文科数学 题型:解答题

(本题满分15分)已知圆N:和抛物线C:,圆的切线与抛物线C交于不同的两点A,B,

(1)当直线的斜率为1时,求线段AB的长;

(2)设点M和点N关于直线对称,问是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题

(本题满分15分)已知直线,曲线

   (1)若且直线与曲线恰有三个公共点时,求实数的取值;

   (2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。[来源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步练习册答案