精英家教网 > 高中数学 > 题目详情
14.已知关于x、y的二元一次不等式组$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\\{\;}\end{array}\right.$
(1)求函数u=3x-y的最大值和最小值;
(2)求函数d=(x-2)2+(y+2)2的最小值.

分析 (1)由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得函数u=3x-y的最大值和最小值;
(2)由d=(x-2)2+(y+2)2的几何意义,即动点(x,y)与定点(2,-2)之间的距离的平方,进一步转化为点到直线的距离的平方求解.

解答 解:(1)作出二元一次不等式组$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\\{\;}\end{array}\right.$表示的平面区域,如图所示.
由u=3x-y,得y=3x-u,得到斜率为3,在y轴上的截距为-u,随u变化的一组平行线,
由图可知,当直线经过可行域上的C点时,截距-u最大,即u最小,
解方程组$\left\{\begin{array}{l}{x+2y=4}\\{x+2=0}\end{array}\right.$,得C(-2,3),
∴umin=3×(-2)-3=-9.
当直线经过可行域上的B点时,截距-u最小,即u最大,
解方程组$\left\{\begin{array}{l}{x+2y=4}\\{x-y=1}\end{array}\right.$,得B(2,1),
∴umax=3×2-1=5.
∴u=3x-y的最大值是5,最小值是-9;
(2)d表示动点(x,y)与定点(2,-2)之间的距离的平方,最小值为点(2,-2)到边界x-y=1的距离的平方.
故${d_{min}}={(\frac{2-(-2)-1}{{\sqrt{2}}})^2}=\frac{3}{2}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的接法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2016这2016个数中能被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{an},则此数列的项数为135.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知函数f(x)=$\frac{4}{x}$+9x,若x>0,求f(x)的最小值及此时的x值.
(2)解不等式(x+2)(3-x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x∈(-$\frac{π}{2}$,0),tanx=-$\frac{4}{3}$,则sin(x+π)等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点$A(-\sqrt{3},0)$和$B(\sqrt{3},0)$,动点C引A、B两点的距离之和为4.
(1)求点C的轨迹方程;
(2)点C的轨迹与直线y=x-2交于D、E两点,求弦DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.四面体ABCD的各棱长均为2,且四个顶点都在一个球面上,则该球的表面积为(  )
A.B.$\sqrt{6}π$C.$\frac{3}{2}π$D.24π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=3x-a×3-x是偶函数.则:
(1)a=-1;
(2)$f(x)<\frac{10}{3}$的解集为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>0,函数f(x)=x3-ax在[-1,1]上是单调减函数,则a的最小值是(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a$,$\overrightarrow b$是非零向量,且向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,若向量$\overrightarrow p=\frac{\overrightarrow a}{|\overrightarrow a|}+\frac{\overrightarrow b}{|\overrightarrow b|}$,则$|\overrightarrow p|$=(  )
A.$2+\sqrt{3}$B.$\sqrt{2+\sqrt{3}}$C.3D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案