精英家教网 > 高中数学 > 题目详情

分别写出下列命题的逆命题、否命题、逆否命题,并判断每个命题的真假:

(1)若+7x-8=0,则x=-8,或x=1;

(2)若m>0,则+x-m=0有实根;

(3)等式两边都乘以同一个数,所得结果仍是等式.

答案:
解析:

分析:此题是考查学生是否会写出一个命题的逆命题、否命题、逆否命题,是否明确四种命题之间的关系,尤其是互为逆否命题之间必同真同假.此类问题的难点在于复合命题否命题的写法.如,若p或q,则r;它的否命题应为若p且q,则r.若p且q,则r或s;它的否命题应为若p或q,则r且s.其中p、q、r、s为简单命题或开语句.

此类问题的难点在于有的命题是三部分组成,有前提、条件、结论.正确地分析命题的前提、条件是解决问题的关键.如,(3)题可以选“两边都乘以同一个数”为前提,“一个式子为等式”为条件,也可以选“一个式子为等式”为前提,“两边都乘以同一个数”为条件.不同的选择,四种命题的写法不同,但若不分清前提、条件,则无法正确写出四种命题.

解(1)原命题:若+7x-8=0,则x=-8,或x=1为真.

逆命题:若x=-8,或x=1,则+7x-8=0,命题为真.

否命题:若+7x-8≠0,则x≠-8,且x≠1,命题为真.

逆否命题:若x≠-8,且x≠1,则+7x-8≠0,命题为真.

(2)原命题:若m>0,则+x-m=0有实根,命题为真.

逆命题:若+x-m=0有实根,则m>0,命题为假.

否命题:若m≤0,则+x-m=0没有实根,命题为假.

逆否命题:若+x-m=0没有实根,则m≤0,命题为真.

(3)解法1 原命题:若一个式子是等式,则它的两边都乘以同一个数,所得结果仍是等式,命题为真.

逆命题:若式子两边都乘以同一个数,所得结果是等式,则这个式子是等式,命题为假.

否命题:若一个式子不是等式,则它的两边都乘以同一个数,所得结果仍不是等式,命题为假.

逆否命题:若式子两边都乘以同一个数,所得结果不是等式,则这个式子不是等式,命题为真.

解法2 原命题:一个等式,若两边乘以同一个数,则所得结果仍为等式,命题为真.

逆命题:一个等式,若两边分别乘以一个数,所得结果仍为等式,则两边乘的是同一数,命题为真.

否命题:一个等式,若两边乘以不同的数,则所得结果不是等式,命题为真.

逆否命题:一个等式,若两边分别乘以一个数,所得结果不是等式,则两边乘的不是同一数,命题为真.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、分别写出下列命题的逆命题、否命题、逆否命题,并判断真假.
(1)当c<0时,若ac>bc,则a<b;
(2)若ab=0,则a=0或b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.
(1)当m>
14
时,mx2-x+1=0无实根;
(2)当abc=0时,a=0或b=0或c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.
(1)若四边形是矩形,则它的对角线相等且互相平分;
(2)正偶数不是质数.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.?

(1)若q<1,则方程x2+2x+q=0有实根;?

(2)若ab=0,则a=0或b=0;?

(3)若x2+y2=0,则x、y全为零.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.

(1)m时,mx2-x+1=0无实根;

(2)当abc=0时,a=0或b=0或c=0.

查看答案和解析>>

同步练习册答案