精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为短轴顶点在圆上.

(Ⅰ)求椭圆方程;

(Ⅱ)已知点,若斜率为1的直线与椭圆相交于两点,试探究以为底边的等腰三角形是否存在?若存在,求出直线的方程,若不存在,说明理由.

【答案】(Ⅰ) ;(Ⅱ).

【解析】试题分析:(Ⅰ)设椭圆的右焦点为,由题意可得:,且,由此能求出椭圆的方程;(Ⅱ)以为底的等腰三角形存在.设斜率为1的直线的方程为,代入中,得:,由此利用根的判别式、韦达定理,结合已知条件能求出直线的方程.

试题解析:(Ⅰ)设椭圆的右焦点为,由题意可得:

所以,椭圆的方程为.

(Ⅱ)以为底的等腰三角形存在.理由如下:

设斜率为1的直线的方程为,代入中,

化简得:,①

因为直线与椭圆相交于两点,所以由解得

,则;③

于是的中点满足

已知点,若以为底的等腰三角形存在,

,即,④将 代入④式,

满足②

此时直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象形如汉字“囧”,故称其为“囧函数”.

下列命题:

①“囧函数”的值域为

②“囧函数”在上单调递增;

③“囧函数”的图象关于轴对称;

④“囧函数”有两个零点;

⑤“囧函数”的图象与直线

至少有一个交点.正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为且椭圆上一点到其两焦点的距离之和为

1求椭圆的标准方程

2设直线与椭圆交于不同两点若点满足的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形

1求证:平面

2求证:平面

3求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

健步走是一种方便而又有效的锻炼方式,老师每天坚持健步走,并用计步器进行统计.他最近8天健步走步数的条形统计图及相应的消耗能量数据表如下:

I)求老师这8天健步走步数的平均数;

II)从步数为16千步,17千步,18千步的6天中任选2天,设老师这2天通过健步走消耗的能量和为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面 侧面1

(Ⅰ)求证:

(Ⅱ)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数的两个极值点为,求函数的解析式;

(2)在(1)的条件下,求函数的图象过点的切线方程;

(3)对一切恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案