精英家教网 > 高中数学 > 题目详情
12.设方程f(x,y)=0的解集非空.如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,有下面5个命题:
①坐标满足f(x,y)=0的点都不在曲线C上;
②曲线C上的点的坐标都不满足f(x,y)=0;
③坐标满足f(x,y)=0的点不都在曲线C上;
④一定有不在曲线C上的点,其坐标满足f(x,y)=0;
⑤坐标满足f(x,y)=0的点有些在曲线C上,有些不在曲线C上.
则上述命题正确的是③④.(填上所有正确命题的序号)

分析 利用曲线与方程的关系、命题的否定即可得出

解答 解:∵命题“坐标满足方程f(x,y)=0的点都在曲线C上”不正确,
∴命题“坐标满足方程f(x,y)=0的点不都在曲线C上”正确,
即“至少有一个不在曲线C上的点,其坐标满足方程f(x,y)=0”.
故答案为:③④

点评 正确理解曲线与方程的关系、命题的否定是解题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是双曲线C的右支上的点,射线PQ平分∠F1PF2交x轴于点Q,过原点O作PQ的平行线交PF1于点M,若|MP|=$\frac{1}{4}$|F1F2|,则C的离心率为(  )
A.$\frac{3}{2}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知四棱锥P-ABCD,地面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点.
(I)证明:AE⊥PD;
(II)若AB=2,AP=2,在线段PC上是否存在点F使二面角E-AF-C的余弦值为$\frac{\sqrt{15}}{5}$?若存在,请确定点F的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线l1:2x-2y+1=0,直线l2:x+by-3=0,若l1⊥l2,则b=1;若l1∥l2,则两直线间的距离为$\frac{7\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=5x5+4x4+3x3+2x2+x+1,若用秦九韶算法求f(5)的值,下面说法正确的是(  )
A.至多4乘法运算和5次加法运算B.15次乘法运算和5次加法运算
C.10次乘法运算和5次加法运算D.至多5次乘法运算和5次加法运算

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:x2+mx+1=0有两个不等的实根,命题q:4x2+4(m-2)x+1=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在正四棱柱ABCD-A1B1C1D1中,底面ABCD的边长为7,BD1与底面所成角的大小为$arctan\frac{6}{7}$,则该正四棱柱的高等于$6\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.1或2B.2C.1D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在一张长为2a米,宽为a米(a>2)的矩形铁皮的四个角上,各剪去一个边长是x米(0<x≤1)的小正方形,折成一个无盖的长方体铁盒,设V(x)表示铁盒的容积.
(1)试写出V(x)的解析式;
(2)记y=$\frac{V(x)}{x}$,当x为何值时,y最小?并求出最小值.

查看答案和解析>>

同步练习册答案