精英家教网 > 高中数学 > 题目详情

 

 定义函数其导函数记为.

(1)   求证:

(2)   设,求证:

(3)   是否存在区间使函数在区间上的值域为? 若存在,求出最小的值及相应的区间.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 (1)∵,令

,当时,

上递减,在上递增

处取得极(最)小值

,即(当且仅当时取等号)……………………4分

(2)由,得

,易知,…………….6分

由(1)知当时,,故

,∴…………………………………………………………9分

(3)

,得

∴当时,

时,

时,

的图象如图所示。

下面考查直线的相交问题

由图可知直线存在交点,

且满足在区间上的值域为

∵在上,为图象的极小值点

∴过作直线的图象交于另一点,当直线绕原点顺时钟旋转至点时,满足条件的取最小值,即的最小值为,相应区间。…………………………………………………………………………                                                                                                                               

 

练习册系列答案
相关习题

科目:高中数学 来源:湖南省2007届高三十校联考第一次考试理科数学试卷 题型:044

定义函数其导函数记为

(1)求证:fn(x)≥nx;

(2)设,求证:0<x0<1;

(3)是否存在区间使函数h(x)=f3(x)-f2(x)在区间[a,b]上的值域为[ka,kb]?若存在,求出最小的k值及相应的区间[a,b].

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三第八次月考理科数学试卷 题型:解答题

定义函数其导函数记为.

(Ⅰ)求的单调递增区间;

(Ⅱ)若,求证:

(Ⅲ)设函数,数列项和为, ,其中.对于给定的正整数,数列满足,且,求.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义函数数学公式其导函数记为数学公式
(Ⅰ)求y=fn(x)-nx的单调递增区间;
(Ⅱ)若数学公式,求证:0<x0<1;
(Ⅲ)设函数φ(x)=f3(x)-f2(x),数列{ak}前k项和为Sk,2kSk=φ(k-1)+2kak,其中a1=1.对于给定的正整数n(n≥2),数列{bn}满足ak+1bk+1=(k-n)bk(k=1,2…,n-1),且b1=1,求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源:福建省龙岩一中2011-2012学年高三下学期第八次月考试卷数学(理) 题型:解答题

 

定义函数其导函数记为.

(Ⅰ)求的单调递增区间;

(Ⅱ)若,求证:

(Ⅲ)设函数,数列项和为, ,其中.对于给定的正整数,数列满足,且,求.

 

查看答案和解析>>

同步练习册答案