分析 由已知得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,n≥2,由此利用累加法能求出an;由${a}_{n}=\frac{2}{n(n+1)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,利用裂项求和法能求出Sn.
解答 解:∵在数列{an}中a1=1,且an=$\frac{n-1}{n+1}$an-1(n≥2),
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,n≥2,
∴an=${a}_{1}×\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×…×\frac{{a}_{n}}{{a}_{n-1}}$
=$1×\frac{1}{3}×\frac{2}{4}×\frac{3}{5}×…×\frac{n-1}{n+1}$
=$\frac{2}{n(n+1)}$,n≥2.
n=1时,上式成立,∴${a}_{n}=\frac{2}{n(n+1)}$.n∈N*.
∵${a}_{n}=\frac{2}{n(n+1)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,
∴Sn=$\frac{1}{2}$($1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$)
=$\frac{1}{2}(1-\frac{1}{n+1})$
=$\frac{n}{2(n+1)}$.
点评 本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意累加法和裂项求和法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com