精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的参数方程和直线的普通方程;

2)已知点是曲线上一点,求点到直线的最小距离.

【答案】(1)曲线的直角坐标方程为: 直线的普通方程为: ;(2).

【解析】试题分析:(1)利用,及即可得曲线的直角坐标系方程,进而得参数方程;消参可得直线的普通方程;

(2)利用曲线的参数形式,由点到直线距离公式得,进而得最值.

试题解析:

(1)由曲线的极坐标方程得:

∴曲线的直角坐标方程为:

曲线的参数方程为,(为参数);

直线的普通方程为: .

(2)设曲线上任意一点,则

到直线的距离为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微

信交流”的态度进行调查,随机抽取了人,他们年龄的频数分布及对 “使用微信交流”赞成的人数如

下表:(注:年龄单位:岁)

年龄

频数

赞成人数

(1))若以“年龄岁为分界点”,由以上统计数据完成下面的列联表,并通过计算判断是否在犯错误的概率不超过的前提下认为“使用微信交流的态度与人的年龄有关”?

年龄不低于岁的人数

年龄低于岁的人数

合计

赞成

不赞成

合计

(2))若从年龄在 的别调查的人中各随机选取两人进行追踪调查,记选中的人中赞成“使用微信交流”的人数为,求随机变量的分布列及数学期望.

附:参考数据如下:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a2=2,a5=8.
(1)求{an}的通项公式;
(2)各项均为正数的等比数列{bn}中,b1=1,b2+b3=a4 , 求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数f(x)=xlnx的定义域及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 =1上有一点M(﹣4, )在抛物线y2=2px(p>0)的准线l上,抛物线的焦点也是椭圆焦点.
(1)求椭圆的标准方程;
(2)若点N在抛物线上,过N作准线l的垂线,垂足为Q,求|MN|+|NQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,角A,B,C所对的边分别为a,b,c,若sin2 A+sin2 B=sin2C+sin AsinB,ccosB=b(1﹣cosC).

(1)判断△ABC的形状;
(2)在△ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上的P点处,设∠BDP=θ,当AD最小时,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线y2=4x的焦点为F.过点P(2,0)的直线交抛物线于A(x1 , y1),B(x2 , y2)两点,直线AF,BF分别与抛物线交于点M,N.

(1)求y1y2的值;
(2)记直线MN的斜率为k1 , 直线AB的斜率为k2 . 证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图多面体 两两垂直

.

() 若点在线段求证: 平面

()求直线与平面所成的角的正弦值

()求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=1﹣ (x∈R),
(1)求反函数f1(x);
(2)解不等式f1(x)>log2(1+x)+1.

查看答案和解析>>

同步练习册答案