【题目】下列命题: ①“若a2<b2 , 则a<b”的否命题;
②“全等三角形面积相等”的逆命题;
③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;
④“若 x(x≠0)为有理数,则x为无理数”的逆否命题.
其中正确的命题是( )
A.③④
B.①③
C.①②
D.②④
【答案】A
【解析】解:①“若a2<b2 , 则a<b”的否命题为“若a2≥b2 , 则a≥b”为假命题,故错误; ②“全等三角形面积相等”的逆命题“面积相等的三角形全等”为假命题,故错误;
③若a>1,则△=4a2﹣4a(a+3)=﹣12a<0,
此时ax2﹣2ax+a+3>0恒成立,
故“若a>1,则ax2﹣2ax+a+3>0的解集为R”为真命题,故其逆否命题为真命题,故正确;
④“若 x(x≠0)为有理数,则x为无理数”为真命题,故其的逆否命题,故正确.
故选:A
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图1,在三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥BC;
(2)求三棱锥D﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 万作为技改费用,投入(50+2x)万元作为宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin(2x+ )+ cos(2x+ ),则( )
A.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD为等边三角形, ,AB⊥AD,AB∥CD,点M是PC的中点. (I)求证:MB∥平面PAD;
(II)求二面角P﹣BC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC是一个面积较大的三角形,点P是△ABC所在平面内一点且 + +2 = ,现将3000粒黄豆随机抛在△ABC内,则落在△PBC内的黄豆数大约是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB= ,BC=CD= ,AD=1.
(1)求异面直线AB、PC所成角的余弦值;
(2)点E是线段AB的中点,求二面角E﹣PC﹣D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得树尖的仰角为30°、45°,且A、B两点之间的距离为60m,则树的高度为( )
A.(30+30 ) m
B.(30+15 ) m??
C.(15+30 ) m
D.(15+15 ) m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点且 =λ ,若 ≥ ,则λ的取值范围是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ , ]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com