精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知圆C

若圆C的切线lx轴和y轴上的截距相等,且截距不为零,求切线l的方程;

已知点为直线上一点,由点P向圆C引一条切线,切点为M,若,求点P的坐标.

【答案】(1);(2)点的坐标为.

【解析】

(1)根据题意,利用待定系数法给出切线的截距式方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;

(2)根据题意,由直线与圆的位置关系可得PM2PC2MC2,又由PMPO,则2PO2PC2MC2,代入点的坐标变形可得:x12+y12﹣2x1+4y1﹣3=0,①,又由点Px1y1)为直线y=2x﹣6上一点,则y1=2x1﹣6,②,联立①②,解可得x1的值,进而计算可得y1的值,即可得答案.

(1)将圆化标准方程为

所以圆心,半径.

又因为圆的切线轴和轴上的截距相等,且截距不为零,

所以设切线的方程为.

因为直线与圆相切,所以圆心到直线的距离等于半径,

.

解得:.

所以切线的方程为.

(2)因为为切线且为切点,所以.

又因为,所以.

又因为

所以

化简可得:①;

因为点在直线上,所以②.

联立①②可得:

消去可得:,解得.

代入②可得:,所以点的坐标为.

代入②可得,所以点的坐标为.

综上可知,点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的极值点.

)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处的切线与平行.

的单调区间;

若存在区间,使上的值域是,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不共线的向量满足 .

1)若垂直,求的值;

2)当时,若存在两个不同的使得成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的离心率为,右准线方程为

求椭圆C的标准方程;

已知斜率存在且不为0的直线l与椭圆C交于AB两点,且点A在第三象限内为椭圆C的上顶点,记直线MAMB的斜率分别为

若直线l经过原点,且,求点A的坐标;

若直线l过点,试探究是否为定值?若是,请求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题:

在定义域上单调递增;

②若锐角满足,则

是定义在上的偶函数,且在上是增函数,若,则

④函数的一个对称中心是

其中真命题的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由上半椭圆 )和部分抛物线 )连接而成, 的公共点为 ,其中的离心率为

(1)求 的值;

(2)过点的直线 分别交于点 (均异于点 ),是否存在直线,使得以为直径的圆恰好过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案