精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)当时,比较为自然对数的底数)的大小.

【答案】(1)函数的单调递增区间为,单调递减区间为;(2).

【解析】试题分析:(1)由上得 的值,得 的解析式,由的增区间,由的减区间;(2)利用函数的单调性结合其图象可知:若 ,则必有一个小于,一个大于,不妨设,当时,结论显然成立,当时, ,令,对函数求导,可得 单调递增,故 ,得,结合函数单调性可得结果。

(1)函数的定义域为

因为的图象在点处的切线方程为

所以解得,所以.

所以,令,得

时, 单调递增;

时, 单调递减.

所以函数的单调递增区间为,单调递减区间为.

(2)当时, .证明如下:

因为时, 单调递减,且

,当时, 单调递增,且.

,则必都大于,且必有一个小于,一个大于.

不妨设,当时,必有.

时,

因为,所以,故.

,所以,所以在区间内单调递增,

所以,所以.

因为 ,所以

又因为在区间内单调递增,

所以,即.

综上,当时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在2060岁的问卷中随机抽取了100份, 统计结果如下面的图表所示.

年龄

分组

抽取份

答对全卷的人数

答对全卷的人数占本组的概率

[20,30)

40

28

0.7

[30,40)

n

27

0.9

[40,50)

10

4

b

[50,60]

20

a

0.1

(1)分别求出n, a, b, c的值;

(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60] 的人中至少有1人被授予“环保之星”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过两点 ,且圆心在直线.

1)求圆的标准方程;

2)直线过点且与圆有两个不同的交点,若直线的斜率大于0,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2 ,AC=BC,F 是AB上一点,且AF= AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=

(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A﹣CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的左右焦点,点为其上一点,且有.

(1)求椭圆的标准方程;

(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形四点坐标为A(0,-2),C(4,2),B(4,-2),D(0,2).

(1)求对角线所在直线的方程;

(2)求矩形外接圆的方程;

(3)若动点为外接圆上一点,点为定点,问线段PN中点的轨迹是什么,并求出该轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面. 的中点, .

(1)求证: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和. (Ⅰ)若2Sn=3n+3.求{an}的通项公式;
(Ⅱ)若a1=1,an+1﹣an=2n(n∈N*),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.

(1)若设休闲区的长A1B1=x米,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

同步练习册答案