精英家教网 > 高中数学 > 题目详情

【题目】四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:(  )

负相关且. ②负相关且

正相关且正相关且

其中正确的结论的序号是(

A. ①② B. ②③ C. ①④ D. ③④

【答案】C

【解析】由回归直线方程可知, ①③负相关, ②④正相关, ①④正确,故选C.

点睛: 两个变量的线性相关:(1)正相关:在散点图中,点散布在从左下角到右上角的区域.对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关:在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系为负相关.(3)线性相关关系、回归直线:如果散点图中点的分布从整体上看大致在一条直线附近 ,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数.
(1)求a的值;
(2)求f(x)的值域;
(3)若关于x的方程|f(x)(2x+1)|=m有1个实根,求实数m的取值范围;
(4)当x∈(0,1]时,tf(x)≥2x﹣2恒成立,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是

A. 首次服用该药物1单位约10分钟后,药物发挥治疗作用

B. 每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒

C. 每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用

D. 首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形为等腰梯形, ,四边形为正方形,平面平面.

(Ⅰ)若点是棱的中点,求证: ∥平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在线段上是否存在点,使平面平面?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)+2kx(k∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入,已知研发投入 (十万元)与利润 (百万元)之间有如下对应数据:

2

3

4

5

6

2

4

5

6

7

若由资料知呈线性相关关系。试求:

1)线性回归方程

2)估计时,利润是多少?

附:利用最小二乘法计算a,b的值时,可根据以下公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断函数f(x)在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求函数f(x)在区间[2,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,直线且依次交抛物线及圆于点四点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程表示焦点在x轴上的椭圆;命题q:双曲线的离心率e.若命题“pq”为真命题,“pq”为假命题,求m的取值范围.

查看答案和解析>>

同步练习册答案