精英家教网 > 高中数学 > 题目详情
如图,用ABC三类不同的元件连接成两个系统N1N2,当元件ABC都正常工作时,系统N1正常工作;当元件A正常工作且元件BC至少有一个正常工作时,系统N2正常工作, 已知元件ABC正常工作的概率依次为0.80,0.90,0.90,分别求系统N1N2正常工作的概率P1P2.
(1) 系统N1正常工作的概率为0.648 (2)系统N2正常工作的概率为0.792
记元件ABC正常工作的事件分别为ABC
由已知条件P(A)=0.80, P(B)=0.90,P(C)=0.90.
(1)因为事件ABC是相互独立的,所以,系统N1正常工作的概率P1=P(A·B·C)=P(A)P(B)P(C)=0.648,故系统N1正常工作的概率为0.648.
(2)系统N2正常工作的概率P2=P(A)·[1-P()]
=P(A)·[1-P()P()]
=0.80×[1-(1-0 .90)(1-0.90)]=0.792
故系统N2正常工作的概率为0.792.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.

 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙各进行一次射击,若甲、乙击中目标的概率分别为0.8, 0.7.求下列事件的概率:
(1)两人都击中目标;
(2)至少有一人击中目标;
(3)恰有一人击中目标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从集合{1,3,6,8}中任取两个数相乘,积是偶数的概率是         
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

多项飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次.一运动员在进行训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离S(米)成反比,现有一碟靶抛出后S(米)与飞行时间t(秒)满足S=15(t+1),(0≤t≤4).假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击,求他命中此碟靶的概率?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.
(1)第一个小组做了三次试验,求至少两次试验成功的概率;
(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为               ;这名同学至少得300分的概率为               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

姚明比赛时罚球命中率为90%,则他在3次罚球中罚失1次的概率是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10000次还能继续使用的概率是0.96,开关了15000次后还能继续使用的概率是0.80,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是       

查看答案和解析>>

同步练习册答案