精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:对于任意时,

(1)若,求证:为等比数列;

(2)若

求数列的通项公式;

是否存在,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.

【答案】(1)详见解析;(2)①,②.

【解析】试题分析:

(1)由等比数列的定义可证得为常数 ,则为等比数列;

(2)由题意累加可得

(3)假设存在实数k,得到关于k的不等式组,求解不等式组可得存在满足题意.

试题解析:

(1)当时,

为常数

为等比数列

(2)①当时,

…………

满足上式,所以

② 假设存在满足条件的,不妨设

(*)

由(1)得

,代入(*),解得:(舍)

可取

代入(*)检验,解得:

∴存在满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面

1)求证: 平面

2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为坐标原点,其离心率为,椭圆的一个焦点和抛物线的焦点重合.

(1)求椭圆的方程

(2)过点的动直线交椭圆两点,试问:在平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点,若存在,说出点的坐标若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|ax-x2|+2b(abR).

(1)b=0若不等式f(x)2xx[02]上恒成立求实数a的取值范围;

(2)已知a为常数且函数f(x)在区间[02]上存在零点求实数b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业准备投入适当的广告费对产品进行促销在一年内预计销售量Q(万件)与广告费x(万元)之间的函数关系为Q= (x>1)已知生产该产品的年固定投入为3万元每生产1万件该产品另需再投入32万元若每件销售价为“年平均每件生产成本(生产成本不含广告费)150%”与“年平均每件所占广告费的50%”之和

(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(年利润=销售收入-成本)

(2)当年广告费为多少万元时企业的年利润最大?最大年利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

14551495

1

002

14951535

4

008

15351575

20

040

15751615

15

030

16151655

8

016

16551695

m

n

合 计

M

N

1)求出表中所表示的数分别是多少?

2)画出频率分布直方图.

3)全体女生中身高在哪组范围内的人数最多?由直方图确定此组数据中位数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.

原料限额

A(吨)

3

2

12

B(吨)

1

2

8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线

1若直线与曲线交于两点,求的值;

2求曲线的内接矩形的周长的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与直线相切.

(1)求动圆圆心的轨迹的方程;

(2)过(1)中轨迹上的点作两条直线分别与轨迹相交于两点,试探究:当直线的斜率存在且倾斜角互补时,直线的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案