精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AB=2BC=2BB1,沿平面C1BD把这个长方体截成两个几何体:
(Ⅰ)设几何体(1)、几何体(2)的体积分为是V1、V2,求V1与V2的比值;
(Ⅱ)在几何体(2)中,求二面角P-QR-C的正切值.
( I)设BC=a,则AB=2a,BB1=a,
所以VABCD-A1B1C1D1=2a×a×a=2a3---------(2分)
因为V2=
1
3
S△CQR×PC=
1
3
×
1
2
×2a×a×a=
1
3
a3
--------------------------(4分)V1=VABCD-A1B1C1D1-V2=2a3-
1
3
a3=
5
3
a3
----------------------(5分)
所以
V1
V2
=
5
3
a3
1
3
a3
=5
------------(6分)
(II)由点C作CH⊥QR于点H,连结PH,
因为PC⊥面CQR,QR?面CQR,
所以PC⊥QR.
因为PC∩CH=C,
所以QR⊥面PCH,
又因为PH?面PCH,
所以QR⊥PH,
所以∠PHC是二面角P-QR-C的平面角--------------------(9分)
CH•QR=CQ•CR,CH×
5
a=a×2a,CH=
2a
5

所以tan∠PHC=
a
2a
5
=
5
2
----------------------------------------------(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

A是△BCD平面外的一点,E,F分别是BC,AD的中点.
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:
(1)D1E与平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形ABCD中,ADBC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EFBC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个四棱锥P一ABCD的正视图是边长为2的正方形及其一条对角线,侧视图和俯视图全全等的等腰直角三角形,直角边长为2,直观图如图.
(1)求四棱锥P一ABCD的体积:
(2)求二面角C-PB-A大小;
(3)M为棱PB上的点,当PM长为何值时,CM⊥PA?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.
(I)求证:A1B平面AEC1
(II)若棱AA1上存在一点M,满足B1M⊥C1E,求AM的长;
(Ⅲ)求平面AEC1与平面ABB1A1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上且AE=1,BF=3,将四边形AEFB沿EF折起,使点B在平面CDEF上的射影H在直线DE上.

(1)求证:AD平面BFC;
(2)求二面角A-DE-F的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1中,点P是直线BC1的动点,则下列四个命题:
①三棱锥A-D1PC的体积不变;
②直线AP与平面ACD1所成角的大小不变;
③二面角P-AD1-C的大小不变:
其中正确的命题有____      .(把所有正确命题的编号填在横线上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为三条不同的直线,为两个不同的平面,下列命题中正确的是(    )
A.,且,则.
B.若平面内有不共线的三点到平面的距离相等,则.
C.若,则.
D.若,则.

查看答案和解析>>

同步练习册答案