设数列{an}的前n项和为Sn,已知a1=1,=an+1-n2-n-,n∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.
(1)a2=4.(2)an=n2.(3)见解析
【解析】(1)2S1=a2--1-,又S1=a1=1,所以a2=4.
(2)当n≥2时,2Sn=nan+1-n3-n2-n,
2Sn-1=(n-1)an-(n-1)3-(n-1)2- (n-1),
两式相减得2an=nan+1-(n-1)an- (3n2-3n+1)-(2n-1)-,
整理得(n+1)an=nan+1-n(n+1),
即=1,又=1,
故数列是首项为=1,公差为1的等差数列,
所以=1+(n-1)×1=n,所以an=n2.
(3)当n=1时,=1<,当n=2时,+=1+=<,
当n≥3时,=<=,
+=1++++…+<1++++…+=1++++…+=+-=-<,所以对一切正整数n,有.
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-7-1练习卷(解析版) 题型:选择题
一名老师和两名男生两名女生站成一排照相,要求两名女生必须站在一起且老师不站在两端,则不同站法的种数为( ).
A.8 B.12 C.16 D.24
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-3练习卷(解析版) 题型:填空题
在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-2练习卷(解析版) 题型:选择题
设l是直线,α,β是两个不同的平面( ).
A.若l∥α,l∥β,则α∥β
B.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β
D.若α⊥β,l∥α,则l⊥β
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-1练习卷(解析版) 题型:选择题
某几何体的三视图如图所示,则该几何体的体积为( ).
A.16+8π B.8+8π C.16+16π D.8+16π
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-4-2练习卷(解析版) 题型:填空题
已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-4-1练习卷(解析版) 题型:解答题
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=ln a3n+1,n=1,2,…,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-3-2练习卷(解析版) 题型:选择题
在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为( ).
A. B. C. D.-
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-2-1练习卷(解析版) 题型:填空题
已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com