精英家教网 > 高中数学 > 题目详情

【题目】设函数,已知有且仅有3个零点,对于下列4个说法正确的是(

A.上存在,满足

B.有且仅有1个最大值点

C.单调递增

D.的取值范围是

【答案】AD

【解析】

A选项,易知最小正周期;对,结合伸缩变换先求轴右侧的前4个零点,进而得到轴右侧的前4个零点,再列出不等式组,即可得的范围;对B,可以把第三个零点与第四个零点的中点坐标求出来,利用选项D的范围,可得该中点坐标可能在内;对C,根据选项D的范围,可得的范围不在区间.

A有且仅有3个零点,则函数的最小正周期,所以在上存在,使得,所以可以成立,故A正确;

B,由D选项中前4个零点分别是:,得,此时可使函数取得最大值,因为,所以,所以可能存在2个最大值点,故B错误;

C,由D选项中,所以,区间不是的子区间,故C错误;

D,函数轴右侧的前4个零点分别是:

则函数轴右侧的前4个零点分别是:

因为有且仅有3个零点,所以,故D正确;

故选:AD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若对任意的,都有恒成立,求的最小值;

2)设,若为曲线上的两个不同的点,满足,且,使得曲线在点处的切线与直线平行,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为的正方形沿对角线折叠,使得平面平面,平面,的中点,且

(1)求证:

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为的函数图像的两个端点为,向量图像上任意一点,其中,若不等式恒成立,则称函数上满足“范围线性近似”,其中最小正实数称为该函数的线性近似阈值.若函数定义在上,则该函数的线性近似阈值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知某公园的四处景观分别位于等腰梯形的四个顶点处,其中两地的距离为千米,两地的距离为千米,.现拟规划在(不包括端点)路段上增加一个景观,并建造观光路直接通往处,造价为每千米万元,又重新装饰路段,造价为每千米万元.

(1)若拟修建观光路路段长为千米,求路段的造价;

(2),当为何值时,段的总造价最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,设边所对的角分别为,已知.

1)求角的大小;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若关于x的方程仅有1个实数根,求实数的取值范围;

2)若是函数的极大值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数(其中常数)图象上的两个动点,点,若的最小值为0,则函数的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

(1)的两个不同零点,是否存在实数,使成立?若存在,的值;若不存在,请说明理由.

(2),函数,存在个零点.

(i)的取值范围;

(ii)分别是这个零点中的最小值与最大值,的最大值.

查看答案和解析>>

同步练习册答案