【题目】设函数,已知在有且仅有3个零点,对于下列4个说法正确的是( )
A.在上存在,满足
B.在有且仅有1个最大值点
C.在单调递增
D.的取值范围是
【答案】AD
【解析】
对A选项,易知最小正周期;对,结合伸缩变换先求在轴右侧的前4个零点,进而得到在轴右侧的前4个零点,再列出不等式组,即可得的范围;对B,可以把第三个零点与第四个零点的中点坐标求出来,利用选项D中的范围,可得该中点坐标可能在内;对C,根据选项D中的范围,可得的范围不在区间内.
对A,在有且仅有3个零点,则函数的最小正周期,所以在上存在,使得,所以可以成立,故A正确;
对B,由D选项中前4个零点分别是:,得,此时可使函数取得最大值,因为,所以,所以在可能存在2个最大值点,故B错误;
对C,由D选项中,所以,区间不是的子区间,故C错误;
对D,函数在轴右侧的前4个零点分别是:,
则函数在轴右侧的前4个零点分别是:,
因为在有且仅有3个零点,所以,故D正确;
故选:AD.
科目:高中数学 来源: 题型:
【题目】定义域为的函数图像的两个端点为、,向量,是图像上任意一点,其中,若不等式恒成立,则称函数在上满足“范围线性近似”,其中最小正实数称为该函数的线性近似阈值.若函数定义在上,则该函数的线性近似阈值是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:已知某公园的四处景观分别位于等腰梯形的四个顶点处,其中,两地的距离为千米,,两地的距离为千米,.现拟规划在(不包括端点)路段上增加一个景观,并建造观光路直接通往处,造价为每千米万元,又重新装饰路段,造价为每千米万元.
(1)若拟修建观光路路段长为千米,求路段的造价;
(2)设,当为何值时,,段的总造价最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数.
(1)若是的两个不同零点,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.
(2)设,函数,存在个零点.
(i)求的取值范围;
(ii)设分别是这个零点中的最小值与最大值,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com