精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,且椭圆C过点$({1,\frac{3}{2}})$.
(I)求椭圆C的标准方程;
(Ⅱ)若椭圆C的右顶点为A,直线l交椭圆C于E、F两点(E、F与A点不重合),且满足AE⊥AF,若点P为EF中点,求直线AP斜率的最大值.

分析 (I)由题意可知:抛物线y2=4x的焦点(1,0),c=1,将点$({1,\frac{3}{2}})$代入椭圆方程,即可求得a和b的值,求得椭圆方程;
(Ⅱ)设直线AE的方程为y=k(x-2),代入椭圆方程由韦达定理,求得E点坐标,由AE⊥AF,及中点坐标公式求得P坐标及直线AP的方程,当k≠0时,t=$\frac{\frac{1}{k}-k}{4({k}^{2}+\frac{1}{{k}^{2}})+6}$,利用换元法及基本不等式的性质,即可求得直线AP斜率的最大值.

解答 解:(Ⅰ)由题意可得:抛物线y2=4x的焦点(1,0)与椭圆C有相同的焦点,即c=1,
a2=b2+c2=b2+1,
由椭圆C过点$({1,\frac{3}{2}})$,代入椭圆方程:$\frac{1}{{b}^{2}+1}+\frac{9}{4{b}^{2}}=1$,解得:a=2,b=$\sqrt{3}$,
则椭圆的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)设直线AE的方程为y=k(x-2),
则$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,可得(3+4k2)x2-16k2x+16k2-12=0,
由2+xE=$\frac{16{k}^{2}}{3+4{k}^{2}}$,可得xE=$\frac{8{k}^{2}-6}{3+4{k}^{2}}$,yE=k(xE-2)=-$\frac{12k}{3+4{k}^{2}}$,
由于AE⊥AF,只要将上式的k换为-$\frac{1}{k}$,可得xF=$\frac{8-6{k}^{2}}{4+3{k}^{2}}$,yF=$\frac{12k}{4+3{k}^{2}}$,
由P为EF的中点,
即有P($\frac{14{k}^{2}}{(4+3{k}^{2})(3+4{k}^{2})}$,$\frac{6k({k}^{2}-1)}{(4+3{k}^{2})(3+4{k}^{2})}$),
则直线AP的斜率为t=$\frac{{y}_{P}}{{x}_{P}-2}$=$\frac{k(1-{k}^{2})}{4{k}^{4}+4+6{k}^{2}}$,
当k=0时,t=0;当k≠0时,t=$\frac{\frac{1}{k}-k}{4({k}^{2}+\frac{1}{{k}^{2}})+6}$,
再令s=$\frac{1}{k}$-k,可得t=$\frac{s}{4{s}^{2}+14}$,
当s=0时,t=0;当s>0时,t=$\frac{1}{4s+\frac{14}{s}}$≤$\frac{1}{2\sqrt{56}}$=$\frac{\sqrt{14}}{56}$,
当且仅当4s=$\frac{14}{s}$时,取得最大值;
综上可得直线AP的斜率的最大值为$\frac{\sqrt{14}}{56}$.

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,韦达定理,换元法及基本不等式的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,F1,F2是椭圆${C_1}:\frac{x^2}{4}+{y^2}=1$与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则双曲线C2的渐近线方程是(  )
A.$y=±\sqrt{2}x$B.$y=±\frac{{\sqrt{2}}}{2}x$C.y=±$\sqrt{3}$xD.y=±$\frac{{\sqrt{6}}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知l是双曲线$C:\frac{x^2}{4}-\frac{y^2}{2}=1$的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若PF1⊥PF2,则△PF1F2的面积为(  )
A.12B.$3\sqrt{2}$C.$\frac{{4\sqrt{2}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全球组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题,代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如表:(单位:人)
  立体几何题 代数题 总计
 男同学 22 8 30
 女同学 8 12 20
 总计 30 20 50
(Ⅰ)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?
(Ⅱ)经统计得,选择做立体几何题的学生正答率为$\frac{4}{5}$,且答对的学生中男生人数是女生人数的5倍,现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行探究,记抽取的两人中答对的人数为X,求 X的分布列及数学期望.
附表及公式
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知θ是第四象限角,且$sin(θ+\frac{π}{4})=\frac{3}{5}$,则cosθ=$\frac{{7\sqrt{2}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)的导数为f'(x),且f(x)=ex+2x•f'(1),则f'(0)=1-2e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设偶函数f(x)满足f(x)=2-x-4(x≤0),则{x|f(x-2)>0}=(  )
A.{x|x<-2或x>4}B.{x|x<-2或x>2}C.{x|x<0或x>4}D.{x|x<0或x>6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列方程表示的直线倾斜角为135°的是(  )
A.y=x-1B.y-1=$\frac{\sqrt{2}}{2}$(x+2)C.$\frac{x}{5}$+$\frac{y}{5}$=1D.$\sqrt{2}$x+2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠ACB=90°,∠ABC=30°,AC=1,且三棱柱ABC-A1B1C1的体积为3,则三棱柱ABC-A1B1C1的外接球的表面积为(  )
A.πB.12πC.16πD.32π

查看答案和解析>>

同步练习册答案