精英家教网 > 高中数学 > 题目详情

【题目】 ,则实数的取值范围为__________

【答案】

【解析】m=0时,符合题意。

m≠0, ,则0<m<4

0m<4

答案为: .

点睛:解本题的关键是处理二次函数在区间上大于0的恒成立问题,对于二次函数的研究一般从以几个方面研究:

一是,开口;

二是,对称轴,主要讨论对称轴与区间的位置关系;

三是,判别式,决定于x轴的交点个数;

四是,区间端点值.

型】填空
束】
15

【题目】已知椭圆 的右焦点为 为直线上一点,线段于点,若,则__________

【答案】

【解析】

由条件椭圆

椭圆的右焦点为F,可知F(1,0),

设点A的坐标为(2m),则=1m),

B的坐标为

B在椭圆C上,

,解得:m=1

A的坐标为(21),.

答案为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若关于的不等式的解集是,求的值;

(2)设关于的不等式的解集是,集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线 ,曲线C2的参数方程为: ,(θ为参数),以O为极点,x轴的正半轴为极轴的极坐标系.
(1)求C1 , C2的极坐标方程;
(2)射线 与C1的异于原点的交点为A,与C2的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

判断的单调性

上的最小值为2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:

温度(单位:℃)

21

23

24

27

29

32

死亡数(单位:株)

6

11

20

27

57

77

经计算:.

其中分别为试验数据中的温度和死亡株数,

(1)是否有较强的线性相关性? 请计算相关系数(精确到)说明.

(2)并求关于的回归方程(都精确到);

(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据,……,

线性相关系数通常情况下当大于0.8时,认为两

个变量有很强的线性相关性

其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国艺术宝库的瑰宝,火纹是常见的一“种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为的正方形将其包含在内,并向该正方形内随机投掷个点,已知恰有个点落在阴影部分,据此可估计阴影部分的面积是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数同时满足:①在定义域内存在,使得成立;

②不等式的解集有且只有一个元素;数列的前项和为

(Ⅰ)求的表达式;

(Ⅱ)求数列的通项公式;

(Ⅲ)设的前项和为,若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCAC6cos B C .

(1)AB的长;

(2)cos 的值.

查看答案和解析>>

同步练习册答案