精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直线坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的参数方程为为参数),曲线的极坐标方程为.

(1)直线的普通方程和曲线的参数方程;

(2)设点上, 处的切线与直线垂直,求的直角坐标.

【答案】(1) 为参数, )(2)

【解析】试题分析(1),得消去得直线的普通方程,由两边直接乘以,得出

(2)由(1)知是以为圆心,半径为的圆,设曲线上的点为,因为处的切线与直线垂直,所以直线的斜率相等,得,出坐标.

试题解析:

(1)由,得

消去得直线的普通方程为.

.将代入上式,

曲线的直角坐标方程为,即.

得曲线的参数方程为为参数,

(2)设曲线上的点为

由(1)知是以为圆心,半径为的圆.

因为处的切线与直线垂直,所以直线的斜率相等,

或者

得直角坐标为或者.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线的方程为,求实数的值;

2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的中心在坐标原点,焦点在x轴上,A1 , A2 , B1 , B2为椭圆顶点,F2为右焦点,延长B1F2与A2B2交于点P,若∠B1PB2为钝角,则该椭圆离心率的取值范围是(
A.( ,1)
B.(0,
C.(0,
D.( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定方程: ,则下列命题中:

①该方程没有小于0的实数解;

②该方程有无数个实数解;

③该方程在(-∞,0)内有且只有一个实数解;

④若x0是该方程的实数解,则x0>-1.

正确的命题是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中, 的中点, 的中点,且为正三角形.

(1)求证: 平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4—4:坐标系与参数方程。

在直角坐标系xOy中,曲线C1的参数方程为(t是参数),以原点O为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cos(θ﹣).

(1)求曲线C2的直角坐标方程,并指出其表示何种曲线;

(2)若曲线C1与曲线C2交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2﹣2x.
(Ⅰ)写出函数y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x≥0,y≥0,且x+2y=1,则2x+3y2的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=ax2+2x+a2﹣3在区间[2,4]上具有单调性,则实数a取值范围是

查看答案和解析>>

同步练习册答案