【题目】已知椭圆的左、右焦点分别为、,经过左焦点的最短弦长为3,离心率为
(1)求椭圆的标准方程;
(2)过的直线与轴正半轴交于点,与椭圆交于点,轴,过的另一直线与椭圆交于、两点,若,求直线的方程.
科目:高中数学 来源: 题型:
【题目】已知数列的首项,其前项和为,设.
(1)若,,且数列是公差为的等差数列,求;
(2)设数列的前项和为,满足.
①求数列的通项公式;
②若对,且,不等式恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点M,N分别是椭圆C:()的左顶点和上顶点,F为其右焦点,,椭圆的离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设不过原点O的直线与椭圆C相交于A,B两点,若直线OA,AB,OB的斜率成等比数列,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系内,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)把曲线和直线化为直角坐标方程;
(2)过原点引一条射线分别交曲线和直线于,两点,射线上另有一点满足,求点的轨迹方程(写成直角坐标形式的普通方程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形中,,,M为上的一点,以为折痕把折起,使点D到达点P的位置,且平面平面.连接,,点N为的中点,且平面.
(1)求线段的长;
(2)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区100名患者的相关信息,得到如下表格:
潜伏期(单位:天) | |||||||
人数 | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;
潜伏期天 | 潜伏期天 | 总计 | |
50岁以上(含50岁) | 100 | ||
50岁以下 | 55 | ||
总计 | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com