精英家教网 > 高中数学 > 题目详情

设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=x2(1-x).

(Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;

(Ⅱ)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤

(Ⅲ)对于函数y=f(x)(x∈[0,+∞,若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由.

解:(Ⅰ)由f(x)=2f(x+1)→f(x)=(x-1),x∈[n,n+1],则(x-n)∈[0,1]

→f(x-n)=(x-n)2(1+n-x). f(x)=f(x-1)=f(x-2)=…=f(x-n)=(x-n)2(1+n-x). (n=0也适用). ………………4分

        (Ⅱ)f(x)=,由f(x)=0得x=n或x=n+

           x

n

(n,n+)

n+

(n+,n+1)

n+1

f(x)

0

0

极大

0

          f(x)的极大值为f(x)的最大值,

又f(x)≥f(n)=f(n+1)=0,∴|f(x)|=f(x)≤(x∈[n,n+1]).…8分

       (Ⅲ)y=f(x),x∈[0,+∞即为y=f(x),x∈[n,n+1],f(x)=-1.

          本题转化为方程f(x)=-1在[n,n+1]上有解问题

即方程在[n,n+1]内是否有解. ……11分

令g(x)=

对轴称x=n+∈[n,n+1],

又△=…=,g(n)=,g(n+1)=

①当0≤n≤2时,g(n+1)≥0,∴方程g(x)=0在区间[0,1],[1,2],[2,3]上分别有一解,即存在三个点P;

②n≥3时,g(n+1)<0,方程g(x)=0在[n,n+1]上无解,即不存在这样点P.

综上所述:满足条件的点P有三个. …………………………16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)=
2x
2x+
2
上两点p1(x1,y1),p2(x2,y2),若
op
=
1
2
(
op1
+
op2
)
,且P点的横坐标为
1
2

(1)求P点的纵坐标;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)
,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n项和,若Tn<a(Sn+2+
2
)
对一切n∈N*都成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012届江苏省泰州中学高三上学期期中考试数学 题型:解答题

(本题满分16分)设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=x2(1-x).
(Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;
(Ⅱ)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤
(Ⅲ)对于函数y=f(x)(x∈[0,+∞,若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分16分)设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=x2(1-x).

(Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;

(Ⅱ)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤

(Ⅲ)对于函数y=f(x)(x∈[0,+∞,若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)对一切实数x满足条件f(3+x)=f(3-x),且方程f(x)=0恰有6个不同实根,则这6个实根之和是_______________.

查看答案和解析>>

同步练习册答案