【题目】设a,b∈R,且a≠2,定义在区间(﹣b,b)内的函数f(x)=lg 是奇函数.
(1)求a的值;
(2)求b的取值范围;
(3)用定义讨论并证明函数f(x)的单调性.
【答案】
(1)解:函数f(x)=lg 是奇函数等价于:
对任意的x∈(﹣b,b),都有f(﹣x)=﹣f(x),
即 = ,
即(a2﹣4)x2=0对任意x∈(﹣b,b)恒成立,
∴a2﹣4=0
又a≠2,
∴a=﹣2
(2)解:由(1)得: >0对任意x∈(﹣b,b)恒成立,
解 >0得:x∈(﹣ , ).
则有(﹣ , )(﹣b,b),
解得:b∈(0, ]
(3)解:任取x1,x2∈(﹣b,b),令x1<x2,
则x1,x2∈(﹣ , ),
∴1﹣2x1>1﹣2x2>0,
1+2x2>1+2x1>0,
即(1+2x2)(1﹣2x1)>(1﹣2x2)(1+2x1)>0,
即 >1,
f(x1)﹣f(x2)= ﹣ = >0,
则f(x1)>f(x2)
∴f(x)在(﹣b,b)内是单调减函数
【解析】(1)函数f(x)=lg 是奇函数等价于:对任意的x∈(﹣b,b),都有f(﹣x)=﹣f(x),即(a2﹣4)x2=0对任意x∈(﹣b,b)恒成立,解得a的值;(2)解 >0得:x∈(﹣ , ).则有(﹣ , )(﹣b,b),解得b的取值范围;(3)任取x1 , x2∈(﹣b,),令x1<x2 , 判断f(x1),f(x2)的大小,根据定义,可得答案.
【考点精析】根据题目的已知条件,利用函数单调性的判断方法和函数奇偶性的性质的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
科目:高中数学 来源: 题型:
【题目】已知全集U={1,2,3,4},集合A={1,2,x2}与B={1,4}是它的子集,
(1)求UB;
(2)若A∩B=B,求x的值;
(3)若A∪B=U,求x.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上不恒为0的函数,且对于任意的实数a,b满足f(2)=2,f(ab)=af(b)+bf(a),an= (n∈N*),bn= (n∈N*),给出下列命题:
①f(0)=f(1);
②f(x)为奇函数;
③数列{an}为等差数列;
④数列{bn}为等比数列.
其中正确的命题是 . (写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a2+a7=﹣23,a3+a8=﹣29.
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为c的等比数列,求{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x),f(0)≠0,f(1)=2,当x>0,f(x)>1,且对任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求f(0)的值.
(2)求证:对任意x∈R,都有f(x)>0.
(3)若f(x)在R上为增函数,解不等式f(3﹣2x)>4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的是
·(1)任取x>0,均有3x>2x;
·(2)当a>0,且a≠1时,有a3>a2;
·(3)y=( )﹣x是减函数;
·(4)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
·(5)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
·(6)y=x2﹣2|x|﹣3的递增区间为[1,+∞).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答
(1)设复数z满足|z|=1,且(3+4i)z为纯虚数,求 ;
(2)已知(2 ﹣ )n的展开式中所有二项式系数之和为64,求展开式的常数项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=4,b+c=8,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com