精英家教网 > 高中数学 > 题目详情
已知m∈R,设命题P:?x∈{x|-2<x<2},使等式x2-2x-m=0成立;命题Q:函数f(x)=3x2+2mx+m+
4
3
有两个不同的零点.“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.
考点:复合命题的真假
专题:函数的性质及应用
分析:本题先对命题p、q进行化简转化,再将条件“P∨Q”为真命题,“P∧Q”为假命题,转化为命题p、q中一个命题为真,另一个命题为假,得到关于m的不等式,解不等式,得到本题结论.
解答: 解:命题p等价于方程x2-2x-m=0在区间(-2,2)上有解.
记g(x)=x2-2x-m,
g(1)≤0
g(-2)>0

-m-1≤0
8-m>0

∴-1≤m<8.
命题q:由方程3x2+2mx+m+
4
3
=0
的根的判别式
△=4m2-12(m+
4
3
)
=4m2-12m-16>0,
得m<-1或m>4.
∵“P∨Q”为真命题,“P∧Q”为假命题,
∴命题p、q中,一个为真,另一个为假.
∴当命题p真q假时,m<-1或m≥8,
当命题p假q真时,-1≤m≤4.
∴m≤4或m≥8.
实数m的取值范围是(-∞,4]∪[8,+∞).
点评:本题考查了一元二次方程的根的存在性、“或”命题和“且”命题的真假判断,本题计算量较大,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线l的法向量
n
=(1 , 2)
,且经过点M(0,1),则直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)求值:sin
25π
6
+cos
3
+tan(-
4
);
(Ⅱ)已知log23=a,log37=b,试用a,b表示log1456.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=3,an+1=
an-1
an+1
(n∈N*),Tn为数列{an}的前n项之积,则T2010=(  )
A、
3
2
B、-
1
6
C、
2
3
D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4,5这五个数字组成数字不重复的五位数,由这些五位数构成集合M,我们把千位数字比万位数字和百位数字都小,且十位数字比百位数字和个位数字都小的五位数称为“五位凹数”例如:21435就是一个五位凹数.
(1)求从集合M中随机抽取一个数恰是“五位凹数”的概率.
(2)设集合M中的“五位凹数”的十位数字为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(0)=1,f(n)=2nf(n-1)(n∈N+),则f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AC=2,BC=4,已知点O是△ABC内一点,且满足
OA
+2
OB
+3
OC
=
0
,则
OC
•(
BA
+
BC
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2
1
2
(ωx+φ)-2
3
sin
1
2
(ωx+φ)cos
1
2
(ωx+φ)(ω>0.0<φ<
π
2
)其图象的两个相邻对称中心的距离为
π
2
,且过点(-
π
6
,2).
(Ⅰ)函数f(x)的达式;
(Ⅱ)若f(
α
2
-
π
6
)=
1
2
,α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两集合M={x∈R|0≤x≤8},N={y∈R|0≤y≤5}.下列的对应关系中,是M到N的映射的是(  )
A、f:x→y=2
x
B、f:x→y=
2
3
x
C、f:x→y=2x-1
D、f:x→y=
3x

查看答案和解析>>

同步练习册答案