精英家教网 > 高中数学 > 题目详情
11.函数f(x)=log4x与g(x)=22x的图象(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称

分析 化简g(x)=22x=4x,从而判断两个函数互为反函数.

解答 解:∵g(x)=22x=4x
∴函数f(x)=log4x与g(x)=22x的图象关于直线y=x对称,
故选D.

点评 本题考查了指数运算的应用及指数函数与对数函数的关系应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,且|$\overrightarrow{MF}$|=|$\overrightarrow{MA}$|,则m=$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}中a1=1,sn为其前n项和,且S4=S9,a4+ak=0,则实数k等于(  )
A.3B.6C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)

项目
类别
年固定
成本
每件产品
成本
每件产品
销售价
每年最多可
生产的件数
A产品20m10200
B产品40818120
其中年固定成本与年生产的件数无关,c为待定常数,其值由生产A产品的原材料价格决定,预计c∈[6,9]另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;
(2)如何投资最合理(可获得最大年利润)?请你做出规划.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x){=_{\;}}|{2^{x-2}}-2|$(x∈R).
(1)解不等式f(x)<2;
(2)数列{an}满足an=f(n)(n∈N*),Sn为{an}的前n项和,对任意的n≥4,不等式${S_n}+\frac{1}{2}≥k{a_n}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知钝角△ABC的面积为2$\sqrt{3}$,AB=2,BC=4,则该三角形的外接圆半径为$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.方程${l}o{g_{(x+1)}}({x^3}-9x+8)•{l}o{g_{(x-1)}}(x+1)=3$的解为x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知θ为第二象限角,且cosθ=-$\frac{3}{5}$,则tan(θ+$\frac{π}{4}$)=$-\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,则a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

同步练习册答案