精英家教网 > 高中数学 > 题目详情

函数f(x)=alnx-bsinx+3有反函数的充要条件是


  1. A.
    a=0且b≠0
  2. B.
    b=0且a≠0
  3. C.
    a=b=0
  4. D.
    a=0或b=0
B
分析:函数有反函数必须是单调函数,只需在选项中找出使得所给的函数是一个单调函数的结果即可.
解答:函数f(x)=alnx-bsinx+3中包括两部分,
alnx是单调的函数,
bsinx在实数范围不是单调函数,
∴b=0,a≠0,
故选B
点评:本题主要考查反函数的知识点,根据互为反函数的知识点,原函数的值域是反函数的定义域,原函数的值域是反函数的值域,反函数考点是高考的常考点,要求比较低是一个可以得分点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x+1)+(x+1)2,其中,a为实常数且a≠0.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)若f(x)≥
a2
对任意x∈(-1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(1+x)-x2,当?p,q∈(0,1),且p-q>0时,不等式f(p+1)-f(q+1)>p-q恒成立,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)满足下面两个条件,求a的取值范围.
①在(-∞,1]上存在极值,
②对于任意的θ∈R,c∈R直线l:xsinθ+2y+c=0都不是函数y=f(x)(x∈(-1,+∞))图象的切线;
(2)若点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3,当a>0时,△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(ex+1)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),a∈R,且g(x)在x=1处取得极值.
(1)求a的值;
(2)若对0≤x≤3,不等式g(x)≤m-8ln2成立,求m的取值范围;
(3)已知△ABC的三个顶点A,B,C都在函数f(x)的图象上,且横坐标依次成等差数列,讨论△ABC是否为钝角三角形,是否为等腰三角形.并证明你的结论.

查看答案和解析>>

同步练习册答案