点是抛物线上的不同两点,过分别作
抛物线的切线,两条切线交于点.
(1)求证:是与的等差中项;
(2)若直线过定点,求证:原点是的垂心;
(3)在(2)的条件下,求的重心的轨迹方程.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
点是抛物线上的不同两点,过分别作抛物线的切线,两条切线交于点。
(1)求证:是与的等差中项;
(2)若直线过定点,求证:原点是的垂心;
(3)在(2)的条件下,求的重心的轨迹方程。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市长河高三市二测模考数学文卷 题型:解答题
(本小题满分15分)
如图所示,已知直线的斜率为且过点,抛物线, 直线与抛物线有两个不同的交点, 是抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点.
(1)求的最小值;
(2)求的取值范围;
(3)若为坐标原点,问是否存在点,使过点的动直线与抛物线交于两点,且以为直径的圆恰过坐标原点, 若存在,求出动点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分15分) 已知抛物线的顶点在原点,焦点在y轴上,过其上一点P(x0, y0)(x0≠0)的切线方程为y-y0=-2x0 (x-x0).
(Ⅰ)求抛物线方程;
(Ⅱ)斜率为k1的直线PA与抛物线的另一交点为A,斜率为k2的直线PB与抛物线的另一交点为B(A、B两点不同),且满足k2+λk1=0(λ≠0, λ≠-1),若,求证线段PM的中点在y轴上;
(Ⅲ)C、D是抛物线上的两个动点,若抛物线在C、D点处的切线互相垂直,直线CD是否过定点?如果是,求出定点坐标,如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com