精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3﹣12x.
(1)求f′(1)的值;
(2)求函数f(x)的单调区间.

【答案】
(1)解:因为f(x)=x3﹣12x,

所以f′(x)=3x2﹣12,所以f′(1)=﹣9


(2)解:f′(x)=3x2﹣12,

解f′(x)>0,得x<﹣2或x>2.

解f′(x)<0,得﹣2<x<2.

所以(﹣∞,﹣2)和(2,+∞)为函数f(x)的单调增区间,(﹣2,2)为函数f(x)的单调减区间


【解析】(1)求导数,即可求f′(1)的值;(2)求导数,利用导数的正负求函数f(x)的单调区间.
【考点精析】掌握基本求导法则和利用导数研究函数的单调性是解答本题的根本,需要知道若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】规定投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀,现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投标未在8环以上,用1表示该次投标在8环以上;再以每三个随机数作为一组,代表一轮的结果,经随机模拟实验产生了如下20组随机数:

101 111 011 101 010 100 100 011 111 110

000 011 010 001 111 011 100 000 101 101

据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(1)求函数的极大值点;

(2)当时,若在上至少存在一点,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),当x∈(﹣∞,0)时,f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五个不相等的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣12x+4,x∈R.
(1)求f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,ADBC,AD=AB=DC=BC=1,EPC的中点,面PACABCD

(1)证明:ED∥面PAB

(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线 ,设交于点.

(1)求点的极坐标;

(2)若直线过点,且与曲线交于两不同的点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆.

(1)若椭圆的离心率为,且点在椭圆上,①求椭圆的方程;

②设分别为椭圆的右顶点和上顶点,直线轴和轴相交于点,求直线的方程;

(2)设 点的直线与椭圆交于两点,且均在的右侧, ,求椭圆离心率的取值范围.

查看答案和解析>>

同步练习册答案