精英家教网 > 高中数学 > 题目详情

【题目】在四面体中, ,二面角的余弦值是,则该四面体外接球的表面积是( )

A. B. C. D.

【答案】B

【解析】因为所以,设的中点为,连接,则三角形的外心为在线段上,且,又三角形的外心为,又,所以平面,过垂直于平面的直线与过垂直于平面的直线交于点,则为四面体外接球的球

心,又,所以

所以,设外接圆半径为,所以,故选B.

点睛:空间几何体与球接、切问题的求解方法

(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.

(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中, 成等差数列是的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若方程恰有两个不相等的实根,则的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)当x∈[﹣1,1]时,求函数g(x)=f(x)﹣2x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x﹣ x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】销售甲、乙两种商品所得利润分别是P(单位:万元)和Q(单位:万元),它们与投入资金t(单位:万元)的关系有经验公式P= t,Q= .今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(单位:万元),
(1)试建立总利润y(单位:万元)关于x的函数关系式;
(2)当对甲种商品投资x(单位:万元)为多少时?总利润y(单位:万元)值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是双曲线E 的左、右焦点,P是双曲线上一点, 到左顶点的距离等于它到渐近线距离的2倍,(1)求双曲线的渐近线方程;(2)当时, 的面积为,求此双曲线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场计划种植某种新作物,为此对这种作物的两个品种分别称为品种甲和品种乙进行田间试验选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙

1假设,求第一大块地都种植品种甲的概率;

2试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量单位:kg/hm2如下表:

分别求品种甲和品种乙的每公顷产量的样本平均和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的各项均为正数,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前n项和Sn.

查看答案和解析>>

同步练习册答案