精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12)

某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从种服装商品,种家电商品,种日用商品中,选出种商品进行促销活动.

)试求选出的种商品中至多有一种是家电商品的概率;

)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高元,同时,若顾客购买该商品,则允许有次抽奖的机会,若中奖,则每次中奖都获得数额为元的奖券.假设顾客每次抽奖时获奖的概率都是,若使促销方案对商场有利,则最少为多少元?

【答案】

最少为

【解析】

)选出种商品一共有种选法, …………2

选出的种商品中至多有一种是家电商品有. …………4

所以至多有一种是家电商品的概率为.…………6

)奖券总额是一随机变量,设为,可能值为,,,.…………7

…………8

…………9

…………10

…………11


0









……………12

所以.……………13

所以,因此要使促销方案对商场有利,则最少为. …………14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在多面体ABCDPE中,四边形ABCD是直角梯形,,平面平面的余弦值为FBE中点,GPD中点.

1)求证:平面ABCD

2)求平面BCE与平面ADE所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面.

1)求证:

2)若,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为4,其图象关于直线对称,给出下面四个结论:

①函数在区间上先增后减;②将函数的图象向右平移个单位后得到的图象关于原点对称;③点是函数图象的一个对称中心;④函数上的最大值为1.其中正确的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3月12日,全国政协总工会界别小组会议上,人社部副部长汤涛在回应委员呼声时表示无论是从养老金方面,还是从人力资源的合理配置来说,延迟退休是大势所趋.不过,汤部长也表示,不少职工对于延迟退休有着不同的意见.某高校一社团就是否同意延迟退休的情况随机采访了200名市民,并进行了统计,得到如下的列联表:

赞同延迟退休

不赞同延迟退休

合计

男性

80

20

100

女性

60

40

100

合计

140

60

200

(1)根据上面的列联表判断能否有的把握认为对延迟退休的态度与性别有关;

(2)为了进一步征求对延迟退休的意见和建议,从抽取的200位市民中对不赞同的按照分层抽样的方法抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少有1人为男性的概率.

附: ,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市美团外卖配送员底薪是每月1800元,设每月配送单数为X,若,每单提成3元,若,每单提成4元,若,每单提成4.5元,饿了么外卖配送员底薪是每月2100元,设每月配送单数为Y,若,每单提成3元,若,每单提成4元,小想在美团外卖和饿了么外卖之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表:

表1:美团外卖配送员甲送餐量统计

日送餐量x(单)

13

14

16

17

18

20

天数

2

6

12

6

2

2

表2:饿了么外卖配送员乙送餐量统计

日送餐量x(单)

11

13

14

15

16

18

天数

4

5

12

3

5

1

(1)设美团外卖配送员月工资为,饿了么外卖配送员月工资为,当时,比较的大小关系

(2)将4月份的日送餐量的频率视为日送餐量的概率

(ⅰ)计算外卖配送员甲和乙每日送餐量的数学期望E(X)和E(Y

(ⅱ)请利用所学的统计学知识为小王作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E过点,过抛物线E上一点作两直线PMPN与圆C相切,且分别交抛物线EMN两点.

(1)求抛物线E的方程,并求其焦点坐标和准线方程;

(2)若直线MN的斜率为,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+)=1

1)求直线l的直角坐标方程和曲线C的普通方程;

2)已知点M 20),若直线l与曲线C相交于PQ两点,求的值.

查看答案和解析>>

同步练习册答案