精英家教网 > 高中数学 > 题目详情

已知中,角,所对的边分别为,外接圆半径是,,且满足条件,则的面积的最大值为         (    )

A. B. C. D.

C

解析试题分析:由正弦定理可得b=2RsinB=2sinB,代入得 2sin2A-2sin2C=2sinAsinB-2sin2B,所以sin2A+sin2B-sin2C=sinAsinB,
又由正弦定理得:a2+b2-c2=ab,∴cosC=,又C为三角形的内角,所以C=60°.
因为ab=a2+b2-c2=a2+b2-(2rsinC)2=a2+b2-3≥2ab-3,所以ab≤3 (当且仅当a=b时,取等号),
所以△ABC面积为absinC≤=
考点:本题考查正弦定理;余弦定理;三角形的面积公式;三角函数中的恒等变换;基本不等式的应用。
点评:本题的主要思路是:由ab=a2+b2-3≥2ab-3 求得ab最大值为3,从而求得△ABC面积absinC 的最大值.其中求出ab≤3是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

要得到的图象只需将y=3sin2x的图象(     )

A.向左平移个单位 B.向右平移个单位
C.向右平移个单位 D.向左平移个单位

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在R上的偶函数上是减函数,是钝角三角形的两个锐角,则下列不等式关系中正确的是(    )

A. B.
C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在同一平面直角坐标系中,函数y=cos()(x∈[0,2π])的图象和直线y=的交点个数是(  )

A.0 B.1 C.2 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

终边在同一条直线上的角的集合是(   )

A. B.
C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

锐角△ABC中,若A=2B,则的取值范围是(   )

A.(1,2) B.(1,C.(D.(

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

锐角使同时成立,则的值为(     )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数的图像为C,如下结论中正确的是(   )
A.图像C关于直线对称  
B.图像C关于点对称
C.函数在区间内是增函数
D.由的图像向右平移个单位长度可以得到图像C。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数为奇函数,且在上为减函数的值可以是【    】

A. B.    
C.  D. 

查看答案和解析>>

同步练习册答案