精英家教网 > 高中数学 > 题目详情
(2012•惠州模拟)(坐标系与参数方程选做题)已知圆C的极坐标方程ρ=2cosθ,则圆C上点到直线l:ρcosθ-2ρsinθ+7=0的最短距离为
8
5
5
-1
8
5
5
-1
分析:先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆和直线的直角坐标方程,再在直角坐标系中算出圆心到直线距离,最后所求的最短距离就是圆心到直线的距离减去半径即可.
解答:解:由ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2-2x=0⇒(x-1)2+y2=1,
ρcosθ-2ρsinθ+7=0⇒x-2y+7=0,
∴圆心到直线距离为:
d=
|1-2×0+7|
12+22
=
8
5
5

则圆C上点到直线l:ρcosθ-2ρsinθ+7=0的最短距离为
8
5
5
-1

故答案为:
8
5
5
-1.
点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知实数4,m,9构成一个等比数列,则圆锥曲线
x2
m
+y2=1
的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知椭圆C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
6
3
,且经过点(
3
2
1
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)计算:
1
-1
1-x2
dx
=
π
2
π
2

查看答案和解析>>

同步练习册答案